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Abstract. Social insects provide us with a powerful metaphor to create decentralized systems of simple 
interacting, and often mobile, agents. The emergent collective intelligence of social insects – swarm 
intelligence – resides not in complex individual abilities but rather in networks of interactions that exist 
among individuals and between individuals and their environment. The study of ant colonies behavior and 
of their self-organizing capabilities is of interest to knowledge retrieval/ management and decision support 
systems sciences, because it provides models of distributed adaptive organization which are useful to solve 
difficult optimization, classification, and distributed control problems, among others. In the present work 
we overview some models derived from the observation of real ants, emphasizing the role played by 
stigmergy as distributed communication paradigm, and we present a novel strategy (ACLUSTER) to tackle 
unsupervised data exploratory analysis as well as data retrieval problems. Moreover and according to our 
knowledge, this is also the first application of ant systems into digital image retrieval problems. 
Nevertheless, the present algorithm could be applied to any type of numeric data. 

 
1. Introduction: Stigmergy and Distributed Awareness 
 
Synergy, from the greek word synergos,  broadly defined, refers to combined or co-operative 
effects produced by two or more elements (parts or individuals). The definition is often 
associated with the quote “the whole is greater than the sum of its parts” (Aristotle, in 
Metaphysics), even if it is more accurate to say that the functional effects produced by 
wholes are different from what the parts can produce alone. Synergy is a ubiquitous 
phenomena in nature and human societies alike. One well know example is provided by the 
emergence of self-organization in social insects, via direct (mandibular, antennation, 
chemical or visual contact, etc) or indirect interactions. The latter types are more subtle and 
defined by Grassé as stigmergy [5] to explain task coordination and regulation in the context 
of nest reconstruction in Macrotermes termites. An example [1], could be provided by two 
individuals, who interact indirectly when one of them modifies the environment and the 
other responds to the new environment at a later time. In other words, stigmergy could be 
defined as a typical case of environmental synergy. Grassé showed that the coordination and 
regulation of building activities do not depend on the workers themselves but are mainly 
achieved by the nest structure: a stimulating configuration triggers the response of a termite 
worker, transforming the configuration into another configuration that may trigger in turn 
another (possibly different) action performed by the same termite or any other worker in the 
colony. Another illustration of how stimergy and self-organization can be combined into 
more subtle adaptive behaviors is recruitment in social insects. Self-organized trail laying by 
individual ants is a way of modifying the environment to communicate with nest mates that 
follow such trails [1]. Division of labor is also another paradigmatic phenomena of 
stigmergy. Simultaneous task performance (parallelism) by specialized workers is believed 
to be more efficient than sequential task performance by unspecialized workers. But by far 
more crucial to the present work and aim, is how ants form piles of items such as dead 
bodies (corpses), larvae, or grains of sand (fig. 1). There again, stigmergy is at work: ants 
deposit items at initially random locations. When other ants perceive deposited items, they 
are  stimulated to  deposit items  next to them,  being  this type of cemetery clustering action, 
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Figure 1. From left to rigth, a sequential clustering task of corpses performed by a real ant colony. 1500 corpses 
are randomly located in a circular arena with radius = 25 cm, where Messor Sancta workers are present. The 
fig. shows the initial state (left), 2 hours, 6 hours and 26 hours (rigth) after the beginning of the experiment [1]. 
 
organization, and brood sorting a type of self-organization and adaptive behavior. There are 
other types of examples (e.g. prey collectively transport), yet stimergy is also present: ants 
change the perceived environment of other ants (their cognitive map,  according  to [3]), and 
in every example, the environment serves as medium of communication [1]. Nevertheless, 
what all these examples have in common is that they show how stigmergy can easily be 
made operational. As mentioned by Bonabeau in [1], that is a promising first step to design 
groups of artificial agents which solve problems: replacing coordination (and possible some 
hierarchy) through direct communications by indirect interactions is appealing if one wishes 
to design simple agents and reduce communication among agents. Finally, stigmergy is often 
associated with flexibility: when the environment changes because of an external 
perturbation, the insects respond appropriately to that perturbation, as if it were a 
modification of the environment caused by the colony’s activities. When it comes to 
artificial agents, this type of flexibility is priceless: it means that the agents can respond to a 
perturbation without being reprogrammed to deal with that particular instability. In our 
context, this means that no classifier re-training is needed for any new sets of data-item types 
(new classes) arriving to the system, as is necessary in many classical models, or even in 
some recent ones. Moreover, the data-items that were used for supervised purposes in early 
stages, can now, along with new items, be re-arranged in more optimal ways. Classification 
and/or data retrieval remains the same, but the system reorganizes itself in order to deal with 
new classes, or even new sub-classes. Recently, several papers (for a good revision see [1]) 
have highlighted the efficiency of stochastic approaches based on ant colonies for different 
problem solving. Data clustering is also one of those problems in which real ants can suggest 
very interesting heuristics for computer scientists. One of the first studies using the metaphor 
of ant colonies related to the above clustering domain is due to Deneubourg [4], where a 
population of ant-like agents randomly moving onto a 2D grid are allowed to move basic 
objects so as to cluster them. This method was then further generalized by Lumer et al. [10], 
applying it to exploratory data analysis, for the first time. Our aim is to improve these 
models, introducing some radical changes and different ant-like heuristics, developing a 
model without any local memory and/or hybridization with more classical approaches. 
Moreover, the present work will be applied for the first time to image retrieval and 
exploratory data analysis. The datasets represent a collection of the most representative 14 
types of Portuguese grey granites (fig.3), with a total set of 237 images, each represented by 
117 Mathematical Morphology [16,9,12] features. Some chinese granites were also used as a 
test, since they can mislead several human experts, leading to a total of 244 images x 177 
features. Sections III -IV describe the present proposal, while results are in sections V-VI. 
 
2. Corpse Clustering and Variants into Exploratory Data Analysis 
 
In several species of ants, workers have been reported to sort their larvae or form piles of 
corpses – literally cemeteries – to clean up their nests. Chrétien (see [1]) has performed 
experiments with the ant Lasius niger to study the organization of cemeteries. Other 



experiments include the ants Pheidole pallidula reported in [4] by Denebourg et al., and 
many species actually organize a cemetery. Figure 1 (section I) shows the dynamics of 
cemetery organization in another species: Messor sancta. If corpses, or more precisely, 
sufficiently large parts of corposes ara randomly distributed in space at the beginning of the 
experiment, the workers form cemetery clusters within a few hours, following a behavior 
similar to aggregation. If the experimental arena is not sufficiently large, or if it contains 
spatial heterogeneities, the clusters will be formed along the edges of the arena or, more 
generally, following the heterogeneities. The basic mechanism underlying this type of 
aggregation phenomenon is an attraction between dead items mediated by the ant workers: 
small clusters of items grow by attracting workers to deposit more items. It is this positive 
and auto-catalytic feedback that leads to the formation of larger an larger clusters. In this 
case, it is therefore the distribution of the clusters in the environment that plays the role of 
stigmergic variable. Denebourg et al. [4] have proposed one model (hereafter called BM, for 
basic model) to account for the above-mentioned phenomenon of corpse clustering in ants. 
The general idea is that isolated items should be picked up and dropped at some other 
location where more items of that type are present. Let us assume that there is only one type 
of item in the environment. The probability Pp for a randomly moving, unladen agent 
(representing an ant in the model) to pick up an item is given by (Eq. 2.1): 
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where f is the perceived fraction of items in the neighborhood of the agent, and k1 is a 
threshold constant. When f << k1, Pp is close to 1, that is, the probability of picking up an 
item is high when there are not many items in the neighborhood. Pp is close to 0 when f >> 
k1, that is, items are unlikely to be removed from dense clusters. The probability Pd for a 
randomly moving loaded agent to deposit an item is given by Eq. 2.2., where k2 is another 
threshold constant: for f << k2, Pd is close to 0, whereas for f >> k2, Pd is close to 1. In their 
simulations, Denebourg et al. [4] have used k1 = 0.1 and k2 = 0.3, testing the spatial sorting 
organization of 400 items of two types, on a 100 x 100 grid, using 10 agents and T = 50; 
5,000,000 iterations were needed to accomplish a feasible visual result. As expected, the 
depositing behavior obeys roughly opposite rules.  

As we shall see, the algorithms later described (as well as those proposed) in the present 
work, are inspired by this idea, but rely on a more direct evaluation of f. This procedure 
should, therefore, be taken as an example among many possible procedures, and changing 
the detail how f is perceived does not drastically alter the results, according to Bonabeau [1]. 
Among other differences proposed later, are also those directly related to how the agents 
move on the spatial grid. For instance, real ants are likely to use chemical or tactile cues to 
orient their behavior. In their simulations, however, Denebourg et al. [4] have taken the 
option of using randomly moving agents, while in here and due to our aim, we suggest the 
use of ant-like spatial transition probabilities (section III), based on chemical pheromone 
non-linear weighting functions. Significantly more interesting to the present proposal is 
however, Lumer’s and Faieta model [10]. Both authors have generalized Denebourg et al.’s 
BM [4], to apply it to exploratory data analysis. The idea is to define a distance or 
dissimilarity d between objects in the space of object attributes. Let d(oi, oj) be the distance 
between two objects oi and oj in the feature space. Let us also assume that an agent is located 
at site r at time t, and finds an object oi at that site. The “local density” f(oi) with respect to 
object oi at site r is then given by: 
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f(oi) is a measure of the average similarity of object oi with the other objects oj present in the 
neighborhood of oi. That is, f(oi) replaces the fraction f of similar objects in the BM model, 
while α is a factor that defines the scale of dissimilarity: it is important for it determines 
when two items should or should not be located next to each other. Then, and inspired by 
Denebourg et al.’s functions [4] (Eqs. 2.1 and 2.2), Lumer and Faieta [10] defined picking 
up probabilities similarly, where f was substituted by f(oi), and dropping probabilities as 
Pd=2.f(oi) for f(oi) < k2, and Pd=1 for the remaining cases. Lumer and Faieta [10] have used 
k1 = 0.1, k2 = 0.15 (while BM uses k2 = 0.3) and α = 0.5, with tmax = 106 steps. In order to 
illustrate the functioning of their algorithm, the authors used a simple example in which the 
attribute space is R2, and the values of the two attributes for each object correspond to its 
coordinates (x,y) in R2. The same distribution was later used for tests in the present work – 
see fig. 2a, section V. Lumer and Faieta [10] have then added three features to their system, 
due to the fact that are generally more clusters in the projected system than in the initial 
distribution. These features help to solve this problem, even if they are computationally 
intensive and broadly bio-inspired. They are: (1) ants with different moving speeds, (2) a 
short term memory, and (3), behavioral switches.  

 
3. From Randomly Moving Agents to Bio-Inspired Spatial Probabilities 
 
Instead of trying to solve some disparities in the basic LF algorithm by adding different ant 
casts, short-term memories and behavioral switches (described in section II) which are 
computationally intensive, representing simultaneously a potential and difficult complex 
parameter tuning, it is our intention (within the present ACLUSTER proposal) to follow real 
ant-like behaviors as possible (some other features will be incorporated, as the use of 
different response thresholds to task-associated stimulus intensities, discussed later at section 
IV). In that sense, bio-inspired spatial transition probabilities are incorporated into the 
system, avoiding randomly moving agents, which tend the distributed algorithm to explore 
regions manifestly without interest (e.g., regions without any type of object clusters), being 
generally, this type of exploration, counterproductive and time consuming. Since this type of 
transition probabilities depend on the spatial distribution of pheromone across the 
environment, the behavior reproduced is also a stigmergic one. Moreover, the strategy not 
only allows to guide ants to find clusters of objects in an adaptive way (if, by any reason, one 
cluster disappears, pheromone tends to evaporate on that location), as the use of embodied 
short-term memories is avoided (since this transition probabilities tends also to increase 
pheromone in specific locations, where more objects are present). As we shall see, the 
distribution of the pheromone represents the memory of the recent history of the swarm, and 
in a sense it contains information which the individual ants are unable to hold or transmit. 
There is no direct communication between the organisms but a type of indirect 
communication through the pheromonal field. In fact, ants are not allowed to have any 
memory and the individual’s spatial knowledge is restricted to local information about the 
whole colony pheromone density. In order to design this behavior, one simple model was 
adopted (Chialvo and Millonas, [3]), and extended (as in [13]) due to specific constraints of 
the present proposal. As described in [3], the state of an individual ant can be expressed by 
its position r, and orientation θ.  It is then sufficient to specify a transition probability from 
one place and orientation (r,θ) to the next (r*,θ*) an instant later. The response function can 
effectively be translated into a two-parameter transition rule between the cells by use of a 
pheromone weigthing function (Eq. 3.1): 
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This equation measures the relative probabilities of moving to a cite r (in our context, to a 
grid location) with pheromone density σ(r). The parameter β is associated with the 
osmotropotaxic sensitivity (a kind of instantaneous pheromonal gradient following), and on 
the other hand, 1/δ is the sensory capacity, which describes the fact that each ant’s ability to 
sense pheromone decreases somewhat at high concentrations. In addition to the former 
equation, there is a weigthing factor w(∆θ), where ∆θ is the change in direction at each time 
step, i.e. measures the magnitude of the difference in orientation. As an additional condition, 
each individual leaves a constant amount η of pheromone at the pixel in which it is located 
at every time step t. This pheromone decays at each time step at a rate k. Then, the 
normalised transition probabilities on the lattice to go from cell k to cell i are given by Pik  [3] 
(Eq. 3.2),  where the notation j/k indicates the sum over all the pixels j which are in the local 
neighbourhood of k. ∆i measures the magnitude of the difference in orientation for the 
previous direction at time t-1. That is, since we use a neighbourhood composed of the cell 
and its eight neighbours, ∆i can take the discrete values 0 through 4, and it is sufficient to 
assign a value wi for each of these changes of direction. Chialvo et al used the weights of w0 
=1 (same direction), w1 =1/2, w2 =1/4, w3 =1/12 and w4 =1/20 (U-turn). In addition, coherent 
results were found for η=0.07 (pheromone deposition rate), k=0.015 (pheromone 
evaporation rate), β=3.5 (osmotropotaxic sensitivity) and δ=0.2 (inverse of sensory 
capacity), where the emergence of well defined networks of trails were possible. For a 
detailed mathematical discussion of this model, and other conditions readers are reported to 
[3] and [13]. In order to achieve emergent and autocatalytic mass behaviours around item 
groups on the habitat, which can significantly change the expected ant colony cognitive map 
(pheromonal field), instead of a constant pheromone deposition rate η used in [3], a term not 
constant is included. This strategy follows an idea implemented by Ramos et al. [13], while 
extending the Chialvo model into digital image habitats. In here, however, this term is 
naturally related with the amount of items found in one specific region. So for instance, if we 
use ∆h as that measure (i.e., the number of items present in one neighborhood), the 
pheromone deposition rate T for a specific ant at that specific cell (at time t), should change 
to a dynamic value (p is a constant = 0.0025): T = η + p∆h. Notice that, if no objects are 
present, results expected by this extended model will be equal to those found by Chialvo and 
Millonas in [3], since ∆h equals to zero. 
 
4. Stressing the Role of Response Thresholds to Task-Associated Stimulus Intensities 
 
In order to model the behavior of ants associated to different tasks, as dropping and picking 
up objects, we suggest the use of combinations of different response thresholds. As we have 
seen before, there are two major factors that should influence any local action taken by the 
ant-like agent: the number of objects in his neighborhood, and their similarity (including the 
hypothetical object carried by one ant). Lumer and Faieta [10], use an average similarity 
(Eq. 2.3, section II), mixing distances between objects with their number, incorporating it 
simultaneously into a response threshold function like the one of Denebourg’s (Eq. 2.1, 2.2, 
section II). Instead, in the present proposal, we suggest the use of combinations of two 
independent response threshold functions, each associated with a different environmental 
factor (or, stimuli intensity), that is, the number of objects in the area, and their similarity. 
Moreover, the computation of average similarities are avoided in the present algorithm, since 



this strategy can be somehow blind to the number of objects present in one specific 
neighborhood. In fact, in Lumer and Faieta’s work [10], there is an hypothetical chance of 
having the same average similarity value, respectively having one or, more objects present in 
that region. But, experimental evidences and observation in some types of ant colonies, can 
provide us with a different answer.  After Wilson [17], it is knowned  that minors and majors 
in the polymorphic species of ants Genus Pheidole, have different response thresholds to 
task-associated stimulus intensities (i.e., division of labor). Recently, and inspired by this 
experimental evidence, Bonabeau et al. [2], proposed a family of response threshold 
functions in order to model this behavior. According to it, every individual has a response 
threshold θ for every task. Individuals engage in task performance when the level of the 
task-associated stimuli s, exceeds their thresholds. Authors defined s as the intensity of a 
stimulus associated with a particular task, i.e. s can be a number of encounters, a chemical 
concentration, or any quantitative cue sensed by individuals. One family of response 
functions Tθ (s) (the probability of performing the task as a function of stimulus intensity s), 
that satisfy this requirement is given by (Eq. 4.1) [2]: 
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where n>1 determines the steepness of the threshold (normally n=2, but similar results can 
be obtained with other values of n>1). Now, at s = θ , this probability is exactly ½. 
Therefore, individuals with a lower value of θ are likely to respond to a lower level of 
stimulus. In order to take account on the number of objects present in one neighborhood, Eq. 
4.1, was used (where, n now stands for the number of objects present in one neighborhood, 
and θ = 5), defining χ (Eq. 4.2) as the response threshold associated to the number of items 
present in a 3 x 3 region around r (one specific grid location). Now, in order to take account 
on the hypothetical similarity between objects, and in each ant action due to this factor, a 
Euclidean normalized distance d is computed within all the pairs of objects present in that 3 
x 3 region around r. Being a and b, a pair of  objects, and fa(i), fb(i) their respective feature 
vectors (being each object defined by F features), then d = (1/dmax).[(1/F).∑i=1,F(fa(i)-fb(i))2]½. 
Clearly, this distance d reaches its maximum (=1, since d is normalized by dmax) when two 
objects are maximally different, and d=0 when they are equally defined by the same F 
features. Then, δ and ε (Eqs. 4.3, 4.4), are respectively defined as the response threshold 
functions associated to the similarity of objects, in case of dropping an object (Eq. 4.3), and 
picking it up (Eq. 4.4), at site r. Note that these functions are similar to those proposed by 
Denebourg et al. [4] (k1 and k2, are threshold constants), while defining probabilities for 
picking up or to deposit an item (Eqs. 2.1, 2.2, section II). In here, however, we use them in 
reversed order, substituting f by d (where f represented, for Denebourg et al., the perceived 
fraction of items in the neighborhood of one agent, having in mind a robotic 
implementation). As we can observe, the probability δ for a specific moving loaded agent to 
deposit an item at site r, is given by Eq. 4.3. When d << k1 (i.e., d close to 0), δ is close to 1, 
that is, the probability of dropping an item is high when the similarity between the loaded 
object and one present in the region around r, is high.  

Now, in every action taken by an agent, and in order to deal, and represent different 
stimulus intensities (number of items and their similarity), present at each site in the 
environment visited by one ant, the strategy uses a composition of the above defined 
response threshold functions (Eq. 4.2, 4.3 and 4.4). These composed probabilities are 
resumed in table 1, and were used as test functions in one preliminar test (section V) 
proposed in [10] in order to illustrate the functioning of the algorithm.  

 



TYPES OF  HYBRID RESPONSE FUNCTIONS USED 

Function Types Picking Probability Dropping Probability 
#1 Pp = (1-χ).ε Pd = χ.δ   
#2 

 
(a) Pp = (1-χ).ε           (b) Pp = ε (a) Pd = χ.δ             (b) Pd = δ 

#3 
 

(a) Pp = 1-χ                (b) Pp = ε (a) Pd = χ                (b) Pd = δ 

#4 Lumer & Faieta (see section II) Lumer & Faieta (see section II) 
 
Table 1 – Types of picking (Pp) and dropping (Pd) probability functions used for several tests. In #2,3 half of 
the ants used one probability function (a), while the rest used the other function (b). In #4, the LF algorithm 
(section II) was fully implemented and followed, but using a toroidal grid. 
 
On the other hand, to evaluate the algorithm behavior, a simple entropy definition is 
proposed. For a finite number of n type A items, placed into a finite area grid, the entropy of 
A type objects can be defined as the normalized sum, over all n, of the number of empty cells 
e (or occupied by objects different from A), surrounding each item A (emax = 8, in 3 x 3 
regions), that is, EA = (∑ ei) / (n. emax). As its obvious, several configurations lead to different 
values of entropy, where EA reaches its maximal value (EA = 1) when all type A items are 
disconnected from each other. Disconnected clusters of type A items, lead also to an increase 
in the value of entropy. 
 
5. Results on a “4 Classes X 200 Gaussian Distributed Points” Problem 
 
As mentioned before, we decide to test the algorithm using the same problem as Lumer and 
Faieta, introduced by them in [10]. This problem consists of 800 points, represented by two 
features each. That is, the attribute space is R2, and the values of the two attributes for each 
object correspond to its coordinates (x,y) in R2. Four clusters of 200 points each were then 
generated in attribute space, with x and y distributed according to Normal (or Gaussian) 
distributions N(!,") of average ! and variance "2 - see figure 2.a) for details. The 800 data 
points (items) were then assigned at random locations on a 57 x 57 non-parametric toroidal 
grid, and the clustering algorithm was run with 80 ants, using the function types specified in 
table 1. Generally, the following empirical rules were followed, since they lead to good 
results: A=4.no, na=A/40, and na/no=0.1, where A is the grid area, no is the number of objects, 
and na the number of ants used. As a final result, objects that are clustered together belong 
generally to the same initial distribution, and objects that do not belong to the same initial 
distribution are found generally in different clusters. In figure 2.b), the evolution of total 
entropy (Etotal=EA+EB+EC+ED), for 106 iterations (as those used in [10]) was plotted for four 
different type functions. It is clear to see that probabilistic functions type #3, are the worse in 
terms of clustering the different items, while the rest (including the algorithm proposed  by 
Lumer and Faieta [10])  have similar  behaviors, and indeed  reduce  drastically  the value of 
entropy of those configurations. We can also get an idea of how the new algorithm clusters 
the different items, while the algorithm proceeds (fig. 2.c,d,e,f). In this case type function #1 
was used, and as observed, initially randomly deposited items at t=1 in the toroidal grid, are 
then at t>0 spatially distributed according to their similarities. 
 
6. Applications into Digital Image Retrieval: A Case Study within a Granite Database 
 
Ornamental stones are quantitatively characterised in many ways, mostly physical, namely, 
geological-petrographical and mineralogical composition, or by mechanical strength. 
However, the properties of such products differ not only in terms of type but also in terms of 
origin, and their variability can also be significant within a same deposit or quarry [12]. 



  
a) b) 

  
c) t = 1, Etotal = 2.910 d) t = 10,000, Etotal = 1.744 

  
e) t = 50,000, Etotal = 1.264 f) t = 1E6, Etotal = 0.906 

 
Algorithm. High-level description of ACLUSTER. 
 
/* Initialization */ 
For every item oi do 
Place oi randomly on grid 
End For 
For all agents do 
Place agent at randomly selected site 
End For 
/* Main loop */ 
For t = 1 to tmax do 
For all agents do 
sum = 0 
Count the number of items n around site r 
If ((agent unladen) and (site r occupied by item oi)) then 
For all sites around r with items present do 
/* According to Eqs. 4.2, 4.4 and Table 1 (section 4) */ 
Compute d,χ, ε and Pp 
Draw random real number R between 0 and 1 
If (R ! Pp) then 
sum = sum + 1 
End If 
End For 
If ((sum " n/2) or (n = 0)) then 
Pick up item oi 
End If 
Else If ((agent carrying item oi) and (site r empty)) then 
For all sites around r with items present do 
/* According to Eqs. 4.2, 4.3 and Table 1 (section 4) */ 
Compute d,χ, δ and Pd 
Draw random real number R between 0 and 1 
If (R ! Pd) then 
sum = sum + 1 
End If 
End For 
If (sum " n/2) then 
Drop item oi 
End If 
End If 
/* According to Eqs. 3.1 and 3.2 (section 3) */ 
Compute W(") and Pik 
Move to a selected r not occupied by other agent 
Count the number of items n around that new site r 
Increase pheromone at site r according to n, that is:  
Pr= Pr+[η+(n/#)] 
End For 
Evaporate pheromone by K, at all grid sites 
End For 
Print location of items 
/* Values of parameters used in experiments */ 
k1 = 0.1, k2 = 0.3, K = 0.015, η = 0.07, # = 400,  
β=3.5,  #=0.2, tmax = 106 steps. 
 

 
Fig. 2. a) Distribution of points in “attribute space”: 4 clusters 
of 200 points each were generated in attribute space, with x 
and y distributed according to Normal (or Gaussian) 
distributions N(!,"): A$[x % N(0.2,0.1), y % N(0.2,0.1)] , B$[x 
% N(0.8,0.1), y % N(0.2,0.1)] , C$[x % N(0.8,0.1), y % 
N(0.8,0.1)] , D$[x % N(0.2,0.1), y % N(0.8,0.1)] , for objects 
type A, B, C and D, respectively. b) Total entropy, Etotal = Ea + 
Eb + Ec + Ed, in time, as the swarm evolves new solutions in 
clustering  four type of objects. Four graphs are shown which 
correspond to four types of Probability functions (dropping 
and picking) analyzed (see table 1). c,d,e,f) Spatial 
distribution of 800 items on a 57 x 57 non-parametric toroidal 
grid at several time steps. At t=1, four types of items are 
randomly allocated into the grid. As time evolves, several 
homogenous clusters emerge due to the ant colony action, and 
as expected the total entropy decreases.  In order to illustrate 
the behavior of the algorithm, items that belong to different 
clusters (fig. 2.a), were in here represented by different 
symbols: o, ∆, • and +. Type 1 probability function was used 
with k1=0.1 and k2=0.3. 

 
Though useful, these methods do not fully solve the problem of classifying a product whose 
end-use makes appearance so critically important. Appearance is conditioned not only by the 
kind of stone but also depends on the subjective evaluation of beauty and hence of economic 
value, which are strongly influenced by supply and demand. Traditionally, the selection 
process is based on visual inspection, giving a subjective characterisation of the appearance 
of the materials. Thus, one suitable tool to characterise the appearance of these natural stones 
is digital image analysis. In the present work we use mathematical morphology (MM, [16]) as 
a feature extraction method, as used in past works by Ramos et al. [12]. Generically, the 
extraction of features by means of image analysis and mathematical morphology techniques 
is implemented in 2 stages: a global and a local analysis. It consists on the extraction of 
features before (global analysis) and after (local analysis) the segmentation or mineral phase 
classification procedures. This approach is general and can be applied not only to characterise 
slab surfaces of granites as also other types of ornamental stones. The method fully described 



 
Figure 3 – Spatial distribution of 244 images (representing 14 types of Portuguese Granites + 2 types of 
Chinese Granites), at t=1,000,000. Each image (point in the environment) is composed by 117 morphological 
and intensity features. Type 1 probability function was used with k1=0.1 and k2=0.3. 

 
in [12] uses the opening MM operator (erosion followed by dilation) and the closing (dilation 
followed by erosion), since they have granulometric properties [11] once are increasing, 
extensive (closing) and anti-extensive (opening) and idempotent. From here, a size-intensity 
diagram [9], can be extracted and used as a feature vector for each image. Data was collected 
for 14 types of Portuguese grey granites, with a total set of 237 images, each represented by 
117 MM features. Some chinese granites were also used as a test, since they can mislead 
several human experts, leading to a total of 244 images x 177 features. Since we had 244 
items (images) to self-organize by the swarm, 24 ants were used (see section V), on a 31 x 31 
non-parametric toroidal grid. Fig. 3 shows the final result at t=106, as well as the type of 
granite textures clustered. 
 
7. Conclusions 
 
We have presented in this paper a new ant-based algorithm named ACLUSTER for data 
unsupervised clustering and data exploratory analysis, while sketching a clear parallel 
between a mode of problem-solving in social insects and a distributed, reactive, algorithmic 
approach. Some of the mechanisms underlying corpse clustering , brood sorting and those 
that can explain the worker’s behavioral flexiblity, as regulation of labor and allocation of 
tasks have first been introduced. As in similar past works applied to document clustering and 
text retrieval [14], the role of response thresholds to task-associated stimulus intensities were 
stressed as an important part of the strategy, and incorporated into the algorithm by using 
compositions of different response functions. These compositions allows the strategy not 
only to be more accurate relatively to behaviours found in nature as avoids short-term 
memory based strategies, and the use of several artificial ant types (using different speeds), 
present in some recent approaches. Behavioral switches as used in [10], were also avoided, 
in order to maintain simplicity and to avoid complex parameter settings to be performed by 
the domain expert. At the level of agent moves in the grid, a truly stigmergic model was 
introduced (section III) in order to deal with clusters of objects, avoiding randomly moves 
which can be counterproductive in the distributed search performed by the swarm, and 
adopted by all past models. In fact, the present algorithm, along with [14], were the first to 
introduce pheromone traces on agents to deter random explorations and encourage objects 
cluster formation, a successful feature not implemented even in some recent proposals [7,6]. 
Results speak for themselves (fig.2,3). While achieving similar results compared to Lumer’s 
model [10], as pointed by the spatial entropy of solutions at each time iteration (fig.2b), the 
present algorithm is by far more simple. Moreover, for some of response thresholds 
compositions used, results are superior while using the present algorithm for the majority of 
time iterations, that is, entropy is always lower, even if at the end they tend to the same 



value. As a final advantage, ACLUSTER does not require any initial information about the 
future classification, such as an initial partition or an initial number of classes. This novel 
strategy was then applied for the first time to digital image retrieval via k-NNR. Generally, 
similar types of images tend to be homogeneously clustered together. But more impressive is 
that this type of stigmergic map can be used to classify new images, arriving to the system at 
any moment. In fact, using 50 randomly chosen images as a test set (from the initial 244; 
several sub-sets were used), an average classification and retrieval rate of 94% was achieved 
by using k-NNR classification methods (Nearest Neighbor Rule – i.e., a label of an unknown 
item is determined by the label of his first k neighbors; k=3 was used). Finally, and as 
verified by other tests [15] on ACLUSTER, a robust nonstop classifier could be achieved, 
which produces class decisions on a continuous stream data, allowing for continuous 
mappings. As we know, many categorization systems have the inhability to perform 
classification and visualization in a continuous basis or to self-organize new data-items into 
the older ones (evenmore into new labels if necessary), unless a new training happens. This 
disadvantge is also present in more recent approaches using Self-Organizing Maps [8], as in 
Kohonen maps. While a benchmark comparison of the above cited methods should be 
interesting to explore, the ability of ACLUSTER to perform continuous mappings and the 
incapacity of the latter to conceive it, tend to difficult any serious comparison. 
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