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Summary

Combinatorial optimisation problems (COPs) pervade human society: scheduling, design,

layout, distribution, timetabling, resource allocation and project management all feature

problems where the solution is some combination of elements, the overall value of which

needs to be either maximised or minimised (i.e., optimised), typically subject to a number

of constraints. Thus, techniques to efficiently solve such problems are an important area of

research. A popular group of optimisation algorithms are the metaheuristics, approaches

that specify how to search the space of solutions in a problem independent way so that

high quality solutions are likely to result in a reasonable amount of computational time.

Although metaheuristic algorithms are specified in a problem independent manner, they

must be tailored to suit each particular problem to which they are applied. This the-

sis investigates a number of aspects of the application of the relatively new Ant Colony

Optimisation (ACO) metaheuristic to different COPs.

The standard ACO metaheuristic is a constructive algorithm loosely based on the for-

aging behaviour of ant colonies, which are able to find the shortest path to a food source

by indirect communication through pheromones. ACO’s artificial pheromone represents a

model of the solution components that its artificial ants use to construct solutions. De-

veloping an appropriate pheromone representation is a key aspect of the application of

ACO to a problem. Since its inception in the early 1990s, ACO has been applied to an

increasing range of problems, leading to the development of a range of pheromone repre-

sentations (Dorigo and Stützle, 2002). However, pheromone representations have typically

been chosen in an ad hoc fashion, either by selecting a representation used previously for a

similar problem or by developing a new representation that appears intuitively to suit the

problem in question. The absence of a systematic approach to adapting ACO to different

COPs has resulted in inconsistent performance across different problems.

An examination of existing ACO applications and the constructive approach more gen-

erally reveals how the metaheuristic can be applied more systematically across a range of

COPs. The two main issues addressed in this thesis are biases inherent in the constructive

process and the systematic selection of pheromone representations.

All constructive metaheuristics explore a tree of constructive decisions (a construction

tree) the shape of which is determined by problem constraints and the chosen method of

building solutions. The shape of this tree, combined with the mapping from paths in the

tree to solutions, can bias a constructive search. This is particularly a problem in COPs

where infeasible solutions cannot be avoided—such infeasible solutions have an elevated

probability of being discovered by a constructive algorithm. This situation is common

in COPs in which a number of entities (e.g., tasks, projects, or individuals) compete for

limited resources. Alternative techniques for determining the order in which demands for
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resources are considered can improve the probability of reaching feasible solutions in these

types of COP. A number of these techniques are investigated, revealing that commonly used

static and dynamic heuristics for this task generally work well, although cannot guarantee

a good probability of finding feasible solutions across all problem instances.

The effectiveness of a given pheromone representation is related to how it maps onto

the construction tree for a problem. Considering this finding, a systematic approach is

developed for the selection of an appropriate pheromone representation based on charac-

teristics of the COP being solved. The comparative performance of ACO using alternative

pheromone representations—those used in the literature, suggested by the new system, or

potentially applicable—is investigated for six problem types, including the travelling sales-

man, multiple knapsack, quadratic assignment, generalised assignment, shop scheduling

and car sequencing problems. Results confirm that the algorithm’s suggested pheromone

representations generally perform well, with two main exceptions. First, an intuitively in-

appropriate pheromone representation previously unused with the knapsack problem was

found to perform best on that problem, a finding that will be the subject of further inves-

tigation. Second, results for the car sequencing problem suggest that using the simplest

pheromone representation that models solution identity (rather than structure) may be

better than attempting to model the full complexity of solution characteristics that con-

tribute to solution cost.

The systematisation of ACO should lead to more consistently high performance of the

algorithm across different problems. Additionally, it supports the creation of a generalised

ACO system, capable of adapting itself to suit many different combinatorial problems

without the need for manual intervention.
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Chapter 1

Introduction

1.1 Combinatorial Optimisation

Any problem in which solution quality may be objectively quantified and for which one

seeks the best solution is an optimisation problem. Such problems typically involve a math-

ematical model of some aspect of the real world, with variables that are either continuous

or discrete. The problems of interest in this work involve discrete variables and are known

as combinatorial optimisation problems (COPs), as their solutions are represented by com-

binations of discrete components. Scheduling, design, layout, distribution (e.g., of mail and

other commodities), timetabling, resource allocation and project management all feature

problems of this kind. While such problems are found in industrial and governmental ac-

tivities as well as in activities unrelated to work, it is typically only in the former two areas

that it is worthwhile expending significant effort to find good solutions. Finding the best

solution in these fields can lead to reductions in expenditure and increases in profit (not

directly related to reduced expenditure) (Osman and Kelly, 1996). Environmental benefits

may also result if environmental aspects of the problem are considered to be important and

explicitly included in the problem model. Consequently, the study of efficient techniques

to solve these problems is of great importance.

To objectively assess the relative merits of different solutions, the definition of a COP

includes an objective function. The goal of combinatorial optimisation is to find a solution

such that the value of the objective function is either maximised or minimised (depending

on the problem). More formally, a COP may be defined as

Optimise f(x) (1.1)

subject to (s.t.)

x ∈ X ⊂ Ω (1.2)

1



where x is a solution to the COP being solved, f(x) is the objective function, X is the set

of feasible solutions and Ω is the set of all possible combinations of components involved

in the problem (Osman and Kelly, 1996).

COPs are typically easy to describe and the value of the objective function can be

calculated in polynomial time (Osman and Kelly, 1996). In the absence of specialised

insight into the structure of a problem and its solutions, the only way to guarantee an

optimal solution is to implicitly or explicitly enumerate each solution and evaluate its cost.

However, as problem size grows, the number of combinations of components representing

potential solutions typically grows exponentially, making complete exploration of the search

space impracticable. Thus, the majority of COPs of interest are NP Complete (Garey and

Johnson, 1979). That is, there exist no known polynomial time algorithms that can find

the optimal solution to these problems.

Two broad approaches are available for solving COPs: exact algorithms and heuristics.

Exact algorithms such as Branch and Bound, Branch and Cut and A* (Winston, 1992) use

a variety of mathematical techniques to identify parts of the solution space that cannot

contain the optimal solution and which consequently need not be explored.1 Given sufficient

computing time, such algorithms can guarantee an optimal solution. However, in the

worst case these algorithms still suffer from exponential run times (Anderson, Sweeney

and Williams, 1994).

Heuristics are polynomial time algorithms that can find good, but not necessarily op-

timal, solutions to COPs in a reasonable amount of computational time. Heuristics vary

in their degree of problem-specificity. Specialised heuristics are tailored to suit only one

problem or a small number of related problems. Such heuristics employ knowledge of the

problem domain to produce high quality solutions, often very quickly. However, their ap-

plicability is then restricted to those problems. Metaheuristics operate at a more abstract

level, directing a problem-specific heuristic through solution space. Each metaheuristic is

based on one or more principles concerning how the search should be conducted, rather

than focussing on the individual solution characteristics that are of interest to a specialised

heuristic. Metaheuristics, in particular those inspired by naturally occurring “optimisa-

tion” processes, have been used to produce good solutions to many difficult problems in

recent decades (Corne, Dorigo and Glover, 1999; Glover and Kochenberger, 2002).

1See Taha (1992), Winston (1992) or Winston (1991) for detailed treatments of each of these approaches.
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1.2 Evolutionary Computing and Collective Intelli-

gence

Complex structure and behaviour can arise naturally as a result of apparently simple rules

(Cohen and Stewart, 1994; Stewart and Cohen, 1994). Many naturally occurring processes

appear to be intelligent, although this “intelligence” does not connote consciousness or

intent. For several decades, computer scientists have used many of these intelligent natural

processes as metaphors for computer-based algorithms to solve various problems, including

COPs.

A notable example of a natural process that has been emulated to solve human problems

is the evolution of species, in particular evolution within species. The mechanisms that

underpin this evolution, while numerous, are generally quite simple. Different optimisation

approaches based on the metaphor of species evolution, collectively known as Evolution-

ary Algorithms (EAs), emphasise different subsets of these mechanisms. While there are

numerous texts that give detailed treatments of the actual mechanisms involved in natural

evolution (e.g., Cohen and Stewart, 1994; Darwin, 1859, reprinted in 1988; Dawkins, 1986),

it is sufficient to describe just the central idea of Darwinian evolution as it is this that is

common to all EAs and most other nature-inspired optimisation techniques.

The central tenet of Darwinian evolution is that individual organisms have heritable

characteristics that affect the probability of those organisms producing offspring that will

carry those characteristics into future generations. In the field of evolutionary computation

(of which EAs are a prime example) this has been transformed into the notion that char-

acteristics that appear in better solutions should be used more frequently in subsequently

produced solutions than those characteristics that appear in poorer solutions.

A number of EAs for learning and optimisation have been developed. Most of these

approaches maintain a population of individuals representing solutions to the problem at

hand, which are modified and, in some cases, bred. In the 1960s, Fogel (1997, 1999) devel-

oped Evolutionary Programming (EP), in which a collection of finite state automata (FSAs)

were evolved to be better able to make predictions. EP applications include predicting the

primality of numbers, learning of game strategies and training artificial neural networks.

At the same time, Rechenberg (1973) and later Schwefel (1975) developed Evolution Strate-

gies (ES), an algorithm for the optimisation of functions with real-valued variables. In ES,

a new solution is produced from an existing one by making random adjustments to the

values of its variables, an operation analogous to the random mutations introduced into

an organism’s genes at each generation. Both EP and ES are characterised as working on

an individual’s phenotype, or observed characteristics (Fogel, 1995). In contrast, Genetic

Algorithms (GAs), developed in the mid 1970s by Holland (1975), are characterised as
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manipulating an individual’s genotype, as solutions are typically encoded as fixed-length

strings similar to the chromosomes that carry genes in living organisms.2 GAs maintain a

population of solutions, manipulating them by operators such as crossover/recombination

(inspired by the distinct biological processes of crossover during gamete production and

sexual reproduction) and mutation (inspired by the biological process of the same name).

As GAs operate on an encoded form of the solution, they can be applied to any COP for

which a suitable encoding can be developed. However, traditional GA approaches typi-

cally have poor constraint handling capabilities, as their recombination operator can easily

produce encodings that do not correspond to feasible solutions. Consequently, traditional

GAs have had mixed success in combinatorial optimisation (Michalewicz, 1996).

The mechanisms for evolving improved solutions over time need not be based on the

rules underlying the evolution of the species. Evolutionary computation is therefore broader

than just those algorithms modelled on this kind of evolution. Another natural process

adapted and emulated for learning and optimisation is the cooperative behaviour of animals

such as social insects and flocking birds. Swarm Intelligence is a learning and optimisation

technique in which individuals are associated with and act to create potential solutions,

rather than directly representing solutions as in EAs. The two most notable examples

of swarm intelligence are Particle Swarm Optimisation (PSO) (Kennedy and Eberhart,

1995), based on the flocking or swarming behaviour of birds or insects respectively, and

Ant Colony Optimisation (ACO), based on the way ants communicate indirectly through

their environment about paths to food. Although neither of these approaches is based on

the metaphor of the evolution of species, algorithms from both exhibit the evolution of

improved solutions over time and are thus examples of evolutionary computation. Indeed,

a number of similarities have been identified between ACO and the EA Population-Based

Incremental Learning (Monmarché, Ramat, Dromel, Slimane and Venturini, 1999).

All of these approaches may also be viewed as examples of collective intelligence, where

knowledge about a problem is not stored centrally but is distributed either across indi-

viduals or in the environment in which individuals search (Bonabeau, Dorigo and Ther-

aulaz, 1999). EAs, PSO and ACO can been placed on a continuum based on the extent

to which individuals represent solutions versus how much control individuals have over the

solutions produced, as shown in Table 1.1. Thus, whether to label a technique as an exam-

ple of evolutionary computation or collective intelligence is more a matter of degree rather

than of hard categorisation. In EAs, the population of individuals are solutions, and are

acted on by an external environment. The current population therefore represents all the

knowledge the algorithm has developed concerning the problem. Thus, unless explicitly

incorporated into a particular EA, such algorithms have no memory of past solutions or

2While Holland (1975) emphasised the importance of encoding solutions as binary strings, modern GAs
typically use encodings that are designed to suit the problem being solved (Michalewicz, 1996).
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Table 1.1: A continuum of collective intelligence approaches.
Approach

EAs PSO ACO
Knowledge Individuals Individuals’ Environment
of solutions positions in

solution space
Manipulation Environment Individuals Individuals
of solutions acting on acting on selves acting on

individuals environment

the solutions encountered to reach the current population. In PSO, individuals know their

location in solution space (and so indirectly represent solutions) and act on themselves and

each other to move to new solutions. Individuals typically have limited historical informa-

tion, as their respective vectors in solution space may be retraced by a limited number of

steps. In ACO, individuals serve solely to construct solutions influenced by their environ-

ment, which in turn is modified by the solutions produced. Their environment therefore

serves to remember solutions created in the past and their quality. Emulation of the real-

world process of attenuation in the chemicals ants use to communicate means that the

memory, and hence influence, of old solutions gradually fades.

1.3 Optimisation Inspired by Ant Colony Behaviour

Social insects such as termites, ants, bees and some species of wasps are capable of complex

and intelligent group behaviour (Bonabeau et al., 1999). This collective behaviour is of

interest as it emerges from apparently simple, and often indirect, interactions between

members of these insect groups, known as colonies. An early attempt to understand

these phenomena is due to Grassé (1959, cited in Bonabeau et al., 1999), who studied

column formation inside termite nests. Grassé observed that termites, in a nest initially

devoid of internal structure, can cooperate to create galleries within the nest without direct

communication or coordination. One of the individual behaviours underlying this emergent

group behaviour is that a single termite, having collected a soil particle from somewhere in

the nest, is more likely to deposit the particle near to existing piles of dirt than elsewhere.

Over time, positive feedback effects lead to the formation of well defined columns, which

then join to form arches. Ultimately the space between the columns and arches is filled

to form walls. The term stigmergy is used to describe this kind of behavioural feedback

(Grassé, 1959). Stigmergic effects are present in most collective behaviour of social insects.

Many of these interactions are mediated by pheromones, volatile chemicals secreted by

individual insects that cause changes in other individuals’ behaviours.
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Ants use pheromone for communication in a number of contexts, including alerting other

individuals to a threat, attracting mates, recognising individuals from the same colony,

recognising a colony’s gyne (i.e., queen), marking a colony’s home range, marking trails

to food sources and recruiting other ants to collect food from those sources (Vander Meer,

Breed, Winston and Espelie, 1997). The way in which many ant colonies forage for food

is of particular interest as a metaphor for combinatorial optimisation.

When an ant encounters a food source it retraces its path back to the nest and deposits

a trail pheromone on the ground. Trail pheromone is often composed of two separate

pheromones, an enduring pheromone to mark the trail and a more volatile pheromone

used to recruit other ants to follow the path to the food source (Vander Meer et al., 1997).

However, it is convenient when modelling the process to treat the two pheromones as

a single pheromone serving both purposes. Observing that colonies of many species of

ant can identify the shortest path to a food source using primarily pheromone-mediated

communication, Deneubourg, Aron, Goss and Pasteels (1990, cited in Bonabeau et al.,

1999) conducted a series of experiments with real ants in an artificial environment. A

number of laboratory ants had their nest placed at one end of a fairly simple maze, where

two paths of different lengths led to the same food source. Ants would choose between the

two paths probabilistically, biased by the intensity of the pheromone trail on each. Initially,

when pheromone trails were non-existent or weak, ants chose each of the two paths with

uniform probability. However, due to the so-called differential path effect, a greater number

of ants were able to traverse the shorter path to and from the food source than the longer

path over the same period of time, leading to relatively more pheromone being deposited

on the shorter path. This produced an autocatalytic3 effect where a greater proportion of

ants were attracted to the shorter path because of its higher pheromone levels, producing

an even more rapid increase in those levels. Over time, pheromone on the longer path

would evaporate and, in the absence of reinforcement, dwindle to negligible levels, so that

eventually all ants chose the shorter path to and from the food source.

There are effectively a finite number of paths that ants may take to a food source, each

of which has a different length. Finding the shortest path is therefore an optimisation

process. Dorigo, Maniezzo and Colorni (1991) identified this feature of ant behaviour as

a possible metaphor for a computer-based optimisation algorithm and produced the first

ACO algorithm by adapting existing models of trail pheromone dynamics to suit com-

binatorial optimisation.4 Their initial applications focused on the well-known travelling

salesman problem (TSP), as there is a correspondence between ants finding the shortest

path to a food source and identifying the shortest Hamiltonian cycle in a weighted graph.

Dorigo, Di Caro and Gambardella (1999) developed a formal definition of ACO, bring-

3An autocatalytic process is one in which the catalyst is one of the products of that process.
4The seminal work in this area is Dorigo’s (1992) PhD thesis.
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ing a number of similar ant-inspired optimisation algorithms into the one metaheuristic

framework.

While the majority of metaheuristics are iterative (i.e., they iteratively alter a complete

solution or set of solutions), ACO algorithms are typically constructive. Just as a real ant

makes a series of decisions about which subpath to take from each point along its overall

path, ACO algorithms use a collection of artificial ants to build complete solutions from a

predefined set of solution components. The next chapter provides a technical definition of

constructive metaheuristics and the ACO metaheuristic and its applications.

As ACO is a learning algorithm it shares some similarities with other learning tech-

niques such as artificial neural networks (see, e.g., Picton, 1994) and reinforcement learn-

ing (see, e.g., Sutton and Barto, 1998). All three techniques use forms of reinforcement to

make certain behaviours or outputs more likely. For instance, an artificial neural network,

modelled on the operation of neurons in animal brains, learns by altering the strength of

relationships between the artificial neurons that make up the network in order to improve

the accuracy of its output. This contrasts with ACO where learning occurs by modifica-

tions to the environment in which artificial ants search. Reinforcement learning is a broad

field that can be said to contain ACO, as in the most general sense reinforcement learning

involves an agent (e.g., an artificial ant) responding to its environment to take an action

it has learned is good (e.g., selecting a particular solution component based on current

pheromone levels). The relationship between the two are described in more detail by Nowé

and Verbeeck (1999).

ACO has rapidly become a popular optimisation technique, applied to a diverse range

of COPs. These include benchmark problems such as the TSP, constraint satisfaction prob-

lems, quadratic and generalised assignment problems, as well as more real-world problems

such as machine scheduling and routing in packet-switched networks. There are two main

reasons for the rapid adoption of ACO by researchers in the field of optimisation. First,

nature-inspired optimisation algorithms are appealing because they can often be quite pow-

erful despite the simplicity of the low level rules that govern them. Even in the absence of

satisfying explanations to bridge the low level behaviour of the algorithm with the emergent

optimisation behaviour, emulation of the real life low level behaviour of ants has led to the

development of a good algorithm. Despite this, ACO has demonstrated its effectiveness on

many of the problems to which it has been applied (Dorigo and Stützle, 2004).

Bonabeau et al. (1999) claim that the ACO approach may be particularly effective

in dynamic optimisation problems, where the problem specification changes over time,

necessitating changes to the solution. While the majority of ACO applications to date

have been to static problems, those that have dealt with dynamic problems have often

performed well (Dorigo and Stützle, 2004).
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1.4 Scope and Aim

Ideally, a metaheuristic may be applied to an optimisation problem with no modification

except for indicating the nature of solution representations over which the search is to take

place. This is the aim of the emerging field of hyper-heuristics (Burke, Hart, Kendall,

Newall, Ross and Schulenburg, 2002). However, in practice, metaheuristics are typically

modified much more extensively to allow them to compete with specialised heuristics.

Adapting a metaheuristic to suit a particular problem can be a time-consuming and non-

systematic process. Recent work by Randall (1999) and Randall and Abramson (2001)

has shown that it is possible to produce a generalised iterative metaheuristic that does not

require extensive modification to be applied to different COPs. This generalised system

has had a great deal of success on a wide range of problems. An obvious conclusion from

these works is that the adaptation of iterative metaheuristics can be largely automated.

However, constructive metaheuristics, such as ACO and Greedy Randomised Adaptive

Search Procedures (GRASPs), are less amenable to generalisation (Randall, 2002a). From

this it can be inferred that it is more difficult to systematise their adaptation. Indeed,

ACO is typically adapted to suit each new problem in an ad hoc fashion, with the re-

sulting algorithms becoming increasingly dissimilar to the biological metaphor on which

the metaheuristic is based. This has produced a mixture of successes and failures in its

application.

This work investigates the nature of constructive metaheuristics and particular aspects

of the ACO metaheuristic that affect how they should be applied to different COPs. The

findings may be used to apply ACO more systematically and hence with greater confidence

that its performance will be good. In those problem domains to which ACO has previously

been applied, some alternative approaches may be suggested. The findings should also

support the application of ACO to problems it has not previously been used to solve.

1.5 Thesis Outline

Chapter 2 provides a formal introduction to constructive metaheuristics in general and the

ACO metaheuristic in particular. It also gives an overview of the numerous applications of

the ACO metaheuristic to combinatorial optimisation problems. The established approach

to adapting ACO to suit a given COP is to model the problem in terms of a graph which

ants traverse to create solutions. The advantages and disadvantages of this approach are

also discussed in Chapter 2.

Chapter 3 explores search biases inherent in any constructive optimisation algorithm

and how these biases depend on the COP being solved and the constructive algorithm

applied. Chapter 4 presents a formal treatment of the definition and use of pheromone,
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while Chapter 5 discusses the interaction between constructive heuristic biases and different

pheromone representations.

Based on the examination of existing uses of pheromone in Chapter 2, and the in-

vestigation of constructive heuristic bias and its potential impact on ACO’s performance

described in Chapters 3 and 5, Chapter 6 presents a more systematic approach to the

selection of pheromone representations.

Chapter 7 presents the results of empirical investigations of the relative performance of

alternative pheromone representations for different problems. Chapter 8 summarises the

contributions of the overall investigation and describes future research directions.
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Chapter 2

ACO Algorithms and Applications

This chapter provides a technical introduction to constructive algorithms for combinatorial

problems and a more detailed definition of the ACO metaheuristic. The development of

ACO is presented together with a number of key ACO algorithms. Section 2.4 reviews

many of the applications of ACO to different COPs. This review illustrates both the

diversity of ACO’s application and common ways in which it has been adapted. Two

key formalisations of ACO are described in Section 2.5, while a number of observations

concerning the application of ACO to different problems are made in Section 2.6.

2.1 Constructive Heuristics and Metaheuristics

In a broad sense there are two kinds of heuristics, iterative and constructive. Iterative

heuristics perform successive modifications to one or more complete solutions, transform-

ing them into new solutions. The majority of optimisation algorithms are of this kind, in-

cluding local search and metaheuristics such as Simulated Annealing (SA) (van Laarhoven

and Aarts, 1987), Tabu Search (TS) (Glover and Laguna, 1997), most EAs and PSO. In

contrast, constructive heuristics start with an initially empty solution and add to it in

order to produce a complete solution.

Constructive heuristics take an empty solution s = ∅ and successively add solution

components to build a complete, typically feasible, solution to a problem. Denote the set

of solution components by C, and a single solution component by ci ∈ C. As construc-

tive heuristics typically add solution components one at a time, a solution produced by

such heuristics may be represented as a sequence of solution components s = 〈ci, . . . , ck〉.
Partial sequences are represented by sp, while a set of sequences is denoted by S. The

ith component in s is denoted by s[i]. At each step of a constructive heuristic, the set of

solution components that may be added to the partial solution sp is given by N(sp) ⊆ C.

Thus N(sp) is similar to the neighbourhood of a solution in an iterative heuristic.
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Algorithm 1 Generic constructive (meta)heuristic

1: while stopping criterion not met do
2: s← 〈〉
3: while s is incomplete do
4: Select a component c ∈ N(s)
5: s← s + c

6: end while
7: if first iteration or s is better than sbest then
8: sbest ← s

9: end if
10: end while
11: Output ssbest

The constructive algorithm used to build solutions, denoted by A, defines both the

components in C and the set of available components N. Hence, A is assumed to be

tailored to suit one COP. A also defines a mapping from sequences to solutions, where

ss is used to denote the solution represented by the sequence s. Therefore, implicitly, A
defines the set of solutions which each partial sequence sp may become, denoted by Ssp . In

many constructive algorithms, there is a many-to-one relationship between sequences and

solutions. Hence, the set of sequences that represent a solution s is denoted by Ss.

An outline of a constructive heuristic in which multiple solutions are constructed over

a number of iterations is presented in Algorithm 1. As the distinction between a heuristic

and a metaheuristic is one of problem specificity, the algorithm shown could actually be

either. However, metaheuristics are typically characterised by the creation of multiple

solutions during a run, while problem-specific heuristics more commonly generate only

a single solution. A deterministic heuristic may be described by lines 2 through 6 of

Algorithm 1, with the addition that the single solution produced is output.

The nature of the solution components depends on the problem specification (as well

as choices of the constructive heuristic’s designer). For instance, in the travelling salesman

problem (TSP), where solutions may be represented as permutations of the cities that must

be visited, C may be defined to represent the set of cities. A sequence that is a permutation

of the elements of C will then correspond to a valid solution.

The formulation of a COP involves a number of decision variables, each with its own

domain of acceptable values. Each distinct solution corresponds to a different set of values

assigned to these variables. For instance, in the TSP of n cities, n decision variables may

be defined, one for each city, each representing the next city to be visited. In a subset

problem, where a set of items must be chosen from some larger set subject to various

constraints, the decision variables may represent the presence or absence of a particular

item in the chosen subset. Typically, the addition of a solution component corresponds
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to the assignment of a value to one of the decision variables in the problem, although

a single solution component might not on its own represent the binding of a value to a

variable. For instance, in the TSP, adding component ck to the sequence 〈ci, . . . , cj〉 equates

to assigning the value ck to the decision variable for city cj, i.e., edge (cj, ck) is now part of

the solution being constructed. Blum (2004) refers to this kind of solution component as a

natural solution component, because sequences are most naturally built from these kinds of

components even though an individual component has no meaning separate from its place

in a sequence.

Solution components may also more directly represent the binding of a value to one

of the decision variables in a problem. For instance, it is commonplace in constructive

algorithms for subset problems that the set of solution components C corresponds to the

set of items from which a subset must be chosen. Hence, adding solution component ci ∈ C

is equivalent to setting the corresponding item’s decision variable to true. Section 2.4 gives

a number of examples of problems and the way that solution components have been defined

for them.

As the addition of a solution component decides the value of one of the variables in

the problem, it consequently restricts the set of solutions that the partial solution may

become.1 This is illustrated in Figure 2.1, which shows the solution space for a problem

with three binary variables.

2.1.1 Sequence Space and Solution Space

The spaces of sequences and corresponding solutions that constructive algorithms explore

can be viewed in a number of ways. Recently, a number of authors have recognised that the

sequence space that constructive algorithms explore forms a tree of constructive decisions

(Birattari, Di Caro and Dorigo, 2002; Maniezzo, 1999; Maniezzo and Milandri, 2002; Mont-

gomery, Randall and Hendtlass, 2004). There is no established name for such a tree, so

the term construction tree will be used hereafter. This is similar to the tree explored by

Constraint Logic Programming (CLP) algorithms (Jaffar and Maher, 1994), where each

level in the tree corresponds to one of the decision variables in the problem and nodes

at the same level correspond to alternative values for that decision variable. However,

whereas CLP algorithms explore (explicitly and implicitly) this tree in a systematic fash-

ion, constructive algorithms explore a diverse, but not exhaustive, range of branches by

successively constructing solutions. Furthermore, the order in which decision variables are

assigned values may vary between paths in a construction tree, while in the tree explored

1If solutions are constructed using a more biologically inspired approach, where decisions made later
in the constructive process can effectively undo previous decisions, much as some genes can switch other
genes on or off, then this would not be the case. However, it is more typical that solutions are constructed
in a straightforward manner, with the values of independent decision variables being decided at each step.
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Figure 2.1: Solution space for combinatorial problem with three binary decision variables;
all solutions are feasible. The shaded area shows the constructive neighbourhood of the
partial solution at each step. The four cubes show the neighbourhood after (a) no variables
have been assigned, (b) variable x has been assigned, (c) variable z has been assigned, (d)
after variable y has been assigned.

by a CLP algorithm this order is fixed.

The construction tree defined by a constructive algorithm A is denoted by TA. The

root of TA corresponds to the empty sequence 〈〉 and consequently to the solution ∅, while

leaves correspond to completed (or infeasible partial) sequences, and so to completed or

infeasible partial solutions. Hence, a partial sequence sp corresponds to an incomplete path

in the tree, and so to a partially completed solution sp. Although trees are by definition

undirected, the majority of constructive heuristics do not allow backtracking (i.e., they

cannot remove solution components and thereby retrace their steps) and hence edges in

the tree are directed away from the start node 〈〉.
An example construction tree for a simple subset problem is given in Figure 2.2. The

subset problem in question consists of selecting any three items from a set of four. When

depicting a construction tree, either edges or nodes may be labelled with the component

chosen at each step. Note that in a mathematical definition of such a tree each node would

be identified by the partial sequence it represents. However, to simplify the presentation

of the tree each node is only labelled with the solution component chosen to reach that

point in the tree, while the partial sequence is read by tracing a subpath starting at the

start node 〈〉.
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Figure 2.2: Construction tree for a simple four item subset problem in which three of the
four items must be chosen. The set of components C = {1, 2, 3, 4}.

An alternative way of representing the solution space that constructive algorithms ex-

plore is as a graph showing the partial solutions represented at each step. In some problems

this collapses a number of nodes in the corresponding construction tree into one. The par-

tial solution space (i.e., space of partial solutions) for the same four item subset problem

is shown in Figure 2.3.

These alternative ways of representing the spaces that constructive algorithms explore

offer different perspectives on the operation of such algorithms. Study of the sequence

space defined by the construction tree in particular forms the basis of the next chapter.

Furthermore, they offer an alternative to the traditional way in which the constructive

process is described in ACO.

Table F.1 in Appendix F summarises the notation used in the thesis to describe con-

structive heuristics. This page is duplicated as a fold-out page so that it may be kept open

while reading other parts of the thesis.
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Figure 2.3: Constructed solution space for a simple four item subset problem in which
three of the four items must be chosen. The set of components C = {1, 2, 3, 4}.

2.1.2 Randomness and Greed in Constructive Metaheuristics

The simplest constructive algorithm selects successive components randomly until a solu-

tion is built (or until no feasible solution is possible). This corresponds to replacing line 4

of Algorithm 1 with Select a component from N(s) randomly. In general, random

construction produces poor solutions and improved results may be obtained if component

selection is biased according to some (typically short-sighted) heuristic measure of each

component’s utility (Dorigo and Stützle, 2002).2 The extreme form of this approach is a

simple greedy constructive algorithm which selects, at each step, the component with the

best heuristically estimated utility. Such an algorithm is consequently deterministic and

so capable of producing only a single solution. While greedy algorithms in general should

intuitively produce better solutions than randomly sampling the search space, constructing

solutions from components that individually appear good does not necessarily result in a

good solution. For instance, the nearest neighbour heuristic is a constructive algorithm

that may be applied to the TSP. It begins by selecting a city at random and then succes-

sively selects the nearest unvisited city as its next destination until a complete solution (a

permutation of the cities) is produced. The solutions created by this heuristic are often

characterised by relatively large distances between cities that were added towards the end

of the constructive process, as purely greedy choices made earlier leave no good alternatives

later in construction.

2Nevertheless, an otherwise undirected, randomised constructive algorithm provides an important
benchmark against which to measure the performance of more specialised algorithms. Such an algorithm
is an important part of analyses in Chapters 3, 5 and 7.

15



More complex constructive metaheuristics lie between these two extremes, combin-

ing some mechanism for exploring a range of solutions with a bias towards components

that appear to be good. For example, Greedy Randomised Adaptive Search Procedures

(GRASPs) (Feo and Resende, 1995) are a class of constructive metaheuristics in which,

at each step, a component is chosen randomly from a small set of components selected

according to some greedy rule. Another key example is the ACO metaheuristic, in which

components are (usually) selected probabilistically according to a distribution biased by

a (typically greedy) heuristic measure of component utility adjusted by an estimate of

component utility learned over time.

2.2 The ACO Metaheuristic

The first ACO algorithm, Ant System (AS), is due to Dorigo et al. (1991), and is more

fully described by Dorigo (1992). Several variations of Ant System were later developed,

eventually leading to the formalisation of the approach as Ant Colony Optimisation by

Dorigo and Di Caro (1999) and Dorigo, Bonabeau and Theraulaz (2000). This section

describes the ACO metaheuristic, while the next section describes some notable variations

of the original Ant System upon which ACO is largely based.3

An ACO algorithm consists of a number of iterations of solution construction, within

which a number of simple agents called (artificial) ants each construct a solution. Hence,

each ant’s behaviour follows Algorithm 1 between lines 2 and 6.

According to the early ACO literature (Dorigo et al., 2000), an ACO algorithm (i.e.,

an implementation or instance of the ACO metaheuristic) is intended to find minimum

costs paths over a graph G = (C, L,W ) while respecting a set of constraints Ω. In this

formulation C is a set of solution components (as defined in the previous section), L =

{lcicj
|ci, cj ∈ C} is a finite set of possible connections between the elements of C, and W a

set of weights associated with the components C or the connections L or both. Hence, for

the TSP, C is the set of cities, L is the set of edges connecting cities and W is the weight of

those edges. Ω is defined as Ω(C, L, t), a finite set of constraints assigned over the elements

of C and L at a given time t (although for many problems the set of constraints will not

change with time). This definition is closely related to descriptions of actual ant behaviour

and the artificial environment experiments of Deneubourg, Aron, Goss and Pasteels (1990).

While it is well-suited to many of the problems to which ACO was applied up to 1999, it is

not as general as the actual application of the metaheuristic has been. Accordingly, current

definitions of ACO are not presented in terms of ants solving shortest-path problems.

3The notation in this section has in places been changed from the original sources to match that
introduced in the previous section.
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Figure 2.4: Construction graph for a simple four item subset problem in which three of the
four items must be chosen. The set of components C = {1, 2, 3, 4}. All ants must start at
node 〈〉 and move towards a component. Dashed lines represent undirected edges that are
implicitly assigned a direction as they are traversed by an ant.

According to more recent descriptions, such as Dorigo and Stützle (2004), ants construct

solutions by walking in a construction graph GC = (C, L), where L fully connects the

elements of C. Hence, the construction graph defines what sequences may be constructed.

Rather than finding a minimum cost path in this graph, newer descriptions state the goal

of ACO as finding an optimal solution. A possible construction graph for the simple subset

problem described earlier is presented in Figure 2.4. To ensure that ants do not make

choices that produce infeasible sequences (and hence, solutions), extra constraints typically

must be defined. Hence, the construction graph on its own is insufficient to describe the

constructive process. These constraints, together with the construction graph, implicitly

define the construction tree and space of partial solutions. That is, the set of all feasible

paths in the construction graph form the paths of the construction tree.

ACO belongs to the class of model-based search (MBS) algorithms (Zlochin and Dorigo,

2002). In an MBS algorithm, new solutions are generated using a parameterised proba-

bilistic model, the parameters of which are updated using previously generated solutions

so as to focus the search on promising areas of the solution space. In ACO, the model

is an analogue of the trail pheromones used by real ants, known in ACO as a pheromone

representation. Early definitions of ACO specified that this artificial pheromone (referred

to as pheromone hereafter) can be associated with the connections L, components C, or

some combination of both, although a diverse range of pheromone representations have

been developed since ACO’s inception that do neither of these. An individual pheromone

value is denoted by τ , and is typically a positive real-valued number. Hence, in the ma-

jority of ACO implementations, the set of pheromone values may be denoted by T ⊂ R+.

As with real ants, pheromone is used to learn about good paths to take, and so possi-

bly indirectly about good solutions to produce. Hence, pheromone information influences

decisions concerning component selection. In addition to pheromone information, ACO

algorithms typically use heuristic information to guide ants towards promising solutions.

This heuristic information is usually denoted by η.
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A generic ACO algorithm is described below as an illustration of the operation of the

ACO metaheuristic. It is also given in Algorithm 2. Sactive represents the set of sequences

that are yet to be completed, Siter represents the set of sequences constructed in each

iteration, ŝ represents the best solution produced at each iteration, and s∗ represents the

best solution produced overall.

At the commencement of the algorithm’s run, all pheromone values are set to the same

level τ0.
4 A set of m ants is created with each ant’s solution either empty or consisting of

one, possibly randomly chosen, component. Ants then construct solutions simultaneously

until all ants have a complete solution. At each step, an ant selects a component to

add to its solution probabilistically based on the relative pheromone intensity on available

components and possibly some form of heuristic information. Pheromone may be updated

at each step (called a local pheromone update), at the completion of a construction iteration

(called global pheromone update), or a combination of the two. In the global pheromone

update, ants retrace the path they took and deposit pheromone in inverse proportion to

the quality of the solution they constructed. This simulates a larger number of ants being

able to traverse a shorter path (i.e., better solution) than a longer path given the the

same amount of time. All pheromone values are then decreased slightly in an analogue of

evaporation. A number of alternative pheromone update schemes are described in the next

section.

2.3 ACO Algorithms

A number of variations of the ACO metaheuristic have been proposed. This section pro-

vides a brief introduction to some of the more notable examples to illustrate the underlying

mechanics of the ACO approach. Only fundamental features of the various approaches are

covered as subsequent chapters consider features of the approach that are to a large extent

independent of the specific features of actual ACO algorithms.

2.3.1 Ant System

Ant System (AS) evolved from the best-performing of a number of alternative ant algo-

rithms developed by Dorigo et al. (1991). AS’s application to the TSP is described to

illustrate its operation. Solutions are constructed in the manner described in Section 2.1,

i.e., ants create a permutation of cities by choosing one city to add to their respective

partial sequences at each step. A TSP instance consists of a set of cities C of size n, with

known distances between them. The distance between cities i and j is denoted d(i, j).

4Early ACO algorithms set τ0 to a low value, while variants such asMAX −MIN Ant System (Stützle
and Hoos, 1996) (described in Section 2.3.3) set τ0 to an upper bound imposed on pheromone values.
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Algorithm 2 Ant Colony Optimisation metaheuristic

1: for all τi do
2: τi ← τ0

3: end for
4: while stopping criterion not met do
5: Active← {1, . . . ,m}
6: for all k ∈ Active do
7: sk ← 〈〉
8: end for
9: while Active 6= ∅ do

10: for all k ∈ Active do
11: c← SelectComponentProbabilistically(N(sk), τ, η)
12: sk ← sk + c

13: if sk is complete or cannot be completed then
14: Active← Active \ {k}
15: end if
16: UpdateLocalPheromone(Sactive, τ) {Optional}
17: end for
18: end while
19: ŝ← BestSolutionConstructed(Siter)
20: if first iteration or BetterCost(ŝ, s∗) then
21: s∗ ← ŝ

22: end if
23: UpdateGlobalPheromone(τ,Siter, ŝ, s

∗)
24: end while
25: Display ss∗

Given that the objective of the TSP is to devise a Hamiltonian cycle of the cities such

that the total distance travelled is minimal, a common choice for heuristic information is

the inverse of the distances between cities, denoted η(i, j) = 1
d(i,j)

. It is also usual prac-

tice to associate pheromone with the links between components and hence the pheromone

on the link between cities i and j is denoted τ(i, j). As all cities must be visited, it is

typical that each iteration begins by adding a single randomly chosen city to each ant’s

solution sequence (although ants could in principle start with empty sequences). Then,

at step t of the current iteration, ant k chooses its next solution component c (i.e., city)

probabilistically according to

pk(t, c) =


τ(sk[t− 1], c)α · η(sk[t− 1], c)β∑

c′∈N(sk) τ(sk[t− 1], c′)α · η(sk[t− 1], c′)]β
if c ∈ N(sk)

0 otherwise

(2.1)
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where pk(t, c) is the probability of ant k choosing component c at step t, sk[t − 1] is the

last component added to ant k’s solution sequence, and the parameters α and β control

the relative importance of pheromone and heuristic information respectively. N(sk) is the

set of unvisited cities.

Once all ants have constructed a solution, ants’ solution sequences are used to update

pheromone according to

τ(ci, cj)← ρ · τ(ci, cj) +
m∑

k=1

∆τk(ci, cj) (2.2)

where ρ ∈ [0, 1] is the pheromone persistence (i.e., the evaporation rate is 1 − ρ), and

∆τk(ci, cj) represents ant k’s contribution to pheromone on that edge, given by Q/Lk,

where Q is an additional parameter of the algorithm.5

2.3.2 Ant-Q and Ant Colony System

Gambardella and Dorigo (1995) describe a family of ant algorithms called Ant-Q, based

on a combination of AS and the reinforcement learning (RL) approach of Q-Learning

(Watkins, 1989; Watkins and Dayan, 1992). While a number of alternative algorithms were

developed, one showed clear improvements over the original AS. This algorithm differs from

AS in two main respects. First, it uses a different component selection rule that favours

making a greedy choice of the next component, called the pseudo-random proportional rule.

Applying this rule to the TSP, ant k chooses its next component c according to

c =

{
arg maxc′∈N(sk)

{
τ(sk[t− 1], c′)α · η(sk[t− 1], c′)β} if q ≤ q0

j otherwise
(2.3)

where q ∈ [0, 1] is a uniform random number, q0 ∈ [0, 1] is a parameter controlling the

probability of making a greedy choice, and j ∈ N(sk) is a component chosen randomly

according to the probability distribution defined by Equation 2.1.

The second main difference is the way in which pheromone is updated. Ant-Q includes

a local pheromone update—a feature of some early prototypes of AS—as well as a global

pheromone update. Further, while all ants take part in local pheromone updates, Ant-Q

allows only one ant’s solution to be used for the global pheromone update, which can either

be the iteration best or the global best (i.e., the best solution produced during the algo-

rithm’s run). Early applications of Ant-Q used the iteration best solution. The rationale

for allowing only one good solution to update pheromone values is to encourage later ants

to search in the neighbourhood of that best solution (Bonabeau et al., 1999).

5The value of Q has little impact on the the performance of AS for Q ≥ 1 (Dorigo et al., 1991).
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As a refinement of their work on AS and Ant-Q, Gambardella and Dorigo (1996) and

Dorigo and Gambardella (1997b) developed the Ant Colony System (ACS), which is used

more widely than its predecessor. The major differences in ACS are the absence of the

parameter α from Equation 2.3 (as α = 1 was generally found to give good results), and

the use of the global best solution to update pheromone, which can make the algorithm

very greedy (Stützle and Hoos, 2000).6 The local pheromone update rule of ACS, which is

highly similar to that in Ant-Q, is given by

τ(sk[t− 1], sk[t])← (1− γ) · τ(sk[t− 1], sk[t]) + γ · τ0 (2.4)

where γ is the proportion of pheromone to remove (to discourage ants in the same iteration

from taking the same path) and τ0 is the initial amount of pheromone deposited on each

component. For the TSP, Gambardella and Dorigo (1996) use τ0 = 1
n·Lnn

, where Lnn is the

length of the solution generated by a nearest neighbour heuristic (see Reinelt (1994) for a

description of this heuristic).7

ACS was one of the first ACO algorithms to make use of local search techniques to

improve the solutions generated by ants, as well as to use candidate sets to reduce the

number of components at each step allowing its application to large problem instances.

Both of these features are discussed in more detail in Section 2.4.2 below.

2.3.3 MAX −MIN Ant System

As ACO is an autocatalytic process, there is the risk that relatively high pheromone levels

on certain solution components may quickly lead to those components being used to the

exclusion of all others, resulting in premature convergence to a suboptimal solution.8 This

problem was especially noticeable on large TSP instances, motivating the development of

theMAX −MIN Ant System (MMAS) (Stützle and Hoos, 1996, 1998, 2000).

The distinguishing characteristic ofMMAS is its imposition of bounds on pheromone

values such that all values fall in the range [τmin, τmax]. Additionally, pheromone levels are

initially set to τmax to encourage exploration early in the search process (Stützle and Hoos,

2000). Stützle and Hoos found that the best solutions were found when the search was close

to stagnation, and used this to guide the selection of values for τmin and τmax. This makes

the selection of appropriate bounds rather problem specific. Details for the TSP are given

6See Gambardella and Dorigo (1996) and Dorigo and Gambardella (1997b) for a more detailed discussion
of the differences between the two algorithms.

7The rationale for using Lnn is that it gives a rough approximation of the optimal solution, while taking
the inverse of this value after multiplying by n gives a small value that is dependent on problem size (M.
Dorigo, personal communication, 4 April, 2002).

8This phenomenon is also observed in real ant colonies, where a colony is unable to exploit a new, short
path due to pheromone saturation of existing longer routes (Bonabeau et al., 1999).
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in Stützle and Hoos (1996, 1998, 2000). Improvements toMMAS include the use of static

candidate sets and the addition of local search heuristics (Stützle and Hoos, 1998; Stützle

and Hoos, 2000). Some MMAS implementations also use a diversification mechanism to

force the discovery of new solutions away from the global-best solution. This mechanism

typically involves reinitialisation of all pheromone values to τmax when little change in

the solutions produced over time is detected. MMAS has had a great deal of success

across a range of problems (e.g., den Besten, Stützle and Dorigo, 2000; Ducatelle and

Levine, 2004; Fenet and Solnon, 2003; Lourenço and Serra, 2002; Stützle and Linke, 2002).

2.3.4 Rank-based Ant System

Another improvement on the original AS is the Rank-based Ant System (ASrank) of

Bullnheimer, Hartl and Strauss (1999b). ASrank is an extension of work involving AS

with elitist ants, first introduced by Dorigo et al. (1991). Using the elitist ants strategy,

the best solution produced at each iteration is further reinforced as if σ ants had produced

it. This approach leads to improvements in solution quality, but is less effective as the

differences between ants’ solutions become smaller. The introduction of ranking helps in

such situations. The combination of elitist ants and ranking of ant solutions is ASrank. At

the end of each iteration, ants are ranked according to the quality of their solutions. The

best solution produces the largest change to pheromone levels, while the next ω solutions

update pheromone in linearly decreasing amounts according to their rank.

2.3.5 Hyper-cube Framework for ACO

The hyper-cube framework (HCF) for ACO is not an alternative ACO algorithm so much

as an alternative approach to the use and updating of pheromone values (Blum, 2004; Blum

and Dorigo, 2003; Blum, Roli and Dorigo, 2001). The main characteristic of this approach

is that pheromone values are bounded between 0 and 1, with associated changes to the

standard equations used to deal with pheromone. While this is similar to the approach

of MMAS, τmax is typically not bounded at 1, but derived based on the problem being

solved. The HCF is based on the approach of modelling a COP by a set of binary decision

variables. That is, each variable can receive the value 0 or 1. While pheromone information

is typically used with problems where the decision variables appear to have n > 2 possible

values, each individual pheromone value actually relates to a single solution feature—a

feature that a solution may or may not exhibit. Seen from this perspective, pheromone

values in the range [0, 1] are simply a relaxation of a set of binary decision variables. For
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an AS algorithm in the HCF, an individual pheromone value τ(i) is updated according to

τ(i)← ρ · τ(i) + (1− ρ) ·
∑

{s∈Supd|i∈s}

F (s)∑
{s′∈Supd|i∈s′} F (s′)

(2.5)

where i is some identifiable characteristic of a solution with which a pheromone value has

been associated, s is a solution, Supd is the set of solutions used to update pheromone, ρ

controls the relative influence of the old pheromone value against that calculated using the

solutions in Supd, and F (s) is a quality function that determines the amount of pheromone

to deposit on i (cf. ∆τ in Equation 2.2).

Blum (2004) suggests the benefits of the approach include it being more robust across

problems with different objective function values (cf. the value used for ∆τ in standard

AS), and that it allows for improved implementation of intensification and diversification,

techniques used to intensify a search around particular solution features and diversify a

search into new spaces of solutions respectively.

2.3.6 Other Variants

There are numerous other variations on ACO, some of which are outlined here. Cordón,

Fernández de Viana and Herrera (2002a, 2002b) and Cordón, Fernández de Viana, Herrera

and Moreno (2000) propose the Best-Worst Ant System (BWAS), which incorporates fea-

tures of the Evolutionary Computation technique of Population-Based Incremental Learn-

ing (PBIL) into AS and ACS. The main distinguishing features of this algorithm are its

penalisation of the worst solution generated at each iteration by a reduction in pheromone

on its constituent elements, mutation of pheromone values, and reinitialisation of phero-

mone values when stagnation in the search is detected. Removing pheromone from the

worst solution at each iteration was found to be ineffective, a result supported by work by

Montgomery and Randall (2002). Reinitialisation of pheromone values when stagnation

occurs is a major feature ofMMAS (Stützle and Hoos, 1998).

Influenced by population-based metaheuristics such as GAs and other EAs, Guntsch

and Middendorf (2002b, 2002a) describe a novel ACO algorithm that maintains a popula-

tion of solutions, Population Based ACO (P-ACO). Solutions in the population are taken

from solutions produced by ants at each iteration, with the population’s size limited to

k individuals. Each solution in the population contributes a fixed amount of pheromone

to the components that it contains. When a solution is removed, the same fixed amount

of pheromone is removed from its components. Consequently, pheromone values can be

discretised in the range [τinit, τmax], where τinit is an arbitrary initial pheromone amount.

This results in a relatively fast pheromone update. Typically the best solution produced

at each iteration is added to the population. To ensure the population size of k, various
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schemes may be adopted for selecting which solution to remove from the population.

2.4 ACO Applications

This section provides an overview of the many applications of ACO to different COPs. It

illustrates the breadth of ACO’s application and general characteristics of ACO algorithms

for particular kinds of problem. Applications to dynamic optimisation problems are not

discussed as these typically involve the addition of features on top of an existing approach

to solving static versions of such problems. Other reviews of ACO applications can be

found in Dorigo and Di Caro (1999), Dorigo et al. (1999), Dorigo and Stützle (2002, 2004)

and Stützle and Dorigo (1999a, 1999b).

The applications are grouped into categories based on the type of problem being solved.

The categories place similar approaches together, and resemble the categories used in

contemporary reviews such as that of Dorigo and Stützle (2004). Within each category an

archetypical problem is described in detail to illustrate the essential features of problems

in that category. See Table 2.1 for a sample of ACO applications.

2.4.1 Subset Problems

Subset problems, discussed in Section 2.1, involve the selection of a subset of items from

some larger set subject to certain constraints. This group of problems includes, but

is not limited to, the multiple knapsack (MKP) (e.g., Petersen, 1967; Leguizamón and

Michalewicz, 1999), set covering (SCP) (e.g., Fiorenzo Catalamo and Malucelli, 2001), set

partitioning (SPP) (e.g., Maniezzo and Milandri, 2002), maximum clique (MCP) (e.g.,

Fenet and Solnon, 2003) and k-cardinality tree (KCTP) problems (e.g., Blum, 2002b).

These problems are typically simple to describe, but are NP Hard (Fiorenzo Catalamo and

Malucelli, 2001). In some cases even finding a feasible solution is extremely difficult, as is

the case with the SPP (Maniezzo and Milandri, 2002). A formulation of the MKP is given

to illustrate some of the features of these problems.

The MKP is typically posed as a budgeting problem (Petersen, 1967), where a subset

of projects J = {1, 2, . . . , n} must be constructed such that total profit is maximised while

limitations on m resources are respected. It can be formulated as

maximise

|s|∑
i=1

p(s[i])

24



Table 2.1: Sample of ACO applications.

Problem type/problem Reference(s)
Subset

Multiple knapsack Leguizamón and Michalewicz (1999)
Set covering Fiorenzo Catalamo and Malucelli (2001),

Rahoual, Hadji and Bachelet (2002)
Set partitioning Maniezzo and Milandri (2002)
Maximum clique Fenet and Solnon (2003)
k-cardinality tree Blum (2002b)

Permutation/routing
Travelling salesman Bullnheimer, Hartl and Strauss (1999b),

Cordón, Fernández de Viana, Herrera and Moreno (2000),
Dorigo, Maniezzo and Colorni (1991, 1996),
Gambardella and Dorigo (1995),
Dorigo and Gambardella (1997b),
Guntsch and Middendorf (2002b),
Stützle and Hoos (1996)

Vehicle routing Bullnheimer, Hartl and Strauss (1997, 1999a),
Doerner et al. (2002),
Ellabib, Otman and Calamai (2002),
Gambardella, Taillard and Agazzi (1999)

Sequential ordering Gambardella and Dorigo (1997)
Scheduling

Job shop Blum and Sampels (2002a, 2004)
Colorni, Dorigo, Maniezzo and Trubian (1994),
van der Zwaan and Marques (1999)

Flow shop Stützle (1998),
T’kindt, Monmarché, Tercinet and Laügt (2002)

Open shop Blum and Sampels (2002a, 2004)
Total tardiness Bauer, Bullnheimer, Hartl and Strauss (1999),

den Besten, Stützle and Dorigo (2000),
Iredi, Merkle and Middendorf (2001),
Merkle and Middendorf (2001)

Group shop Blum and Sampels (2002a, 2004)
Assignment

Quadratic assignment Cordón, Fernández de Viana and Herrera (2002a),
Dorigo, Maniezzo and Colorni (1996),
Maniezzo (1999),
Maniezzo and Colorni (1999),
Stützle (1997),
Taillard and Gambardella (1997)

Frequency assignment Maniezzo and Carbonaro (2000)
Generalised assignment Lourenço and Serra (2002),

Randall (2004)
Graph colouring Costa and Hertz (1997)
Bin packing, cutting stock Ducatelle and Levine (2001, 2004)
University timetabling Socha, Knowles and Sampels (2002)

Constraint satisfaction
Maximum satisfiability Roli, Blum and Dorigo (2001),

Schoofs and Naudts (2000)
Solnon (2000, 2002),

n-queens Solnon (2000)
Car sequencing Gottlieb, Puchta and Solnon (2003)

Others
2D HP protein folding Shmygelska, Aguirre-Hernández and Hoos (2002)
Bus driver scheduling Forsyth and Wren (1997)
Network synthesis Randall and Tonkes (2001)
Shortest common supersequence Michel and Middendorf (1999)
Aircraft landing scheduling Randall (2002b)
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s.t.
|s|∑

j=1

r(i, s[j]) ≤ c(i) ∀i ∈ {1, 2, . . . ,m}

where s is the solution, s[j] is the jth item included in the solution, p(j) is the profit

associated with including project j in the project mix, r(i, j) is the amount of resource

i consumed by project j, and c(i) is the amount of resource i available. Throughout the

remainder of the thesis the more general term item is used instead of the term project.

In all ACO algorithms for the mentioned problems, with the exception of the SPP,

solution components represent the items that may be chosen to form the subset. Thus C

is the set of items.

ACO algorithms for the MKP (Leguizamón and Michalewicz, 1999) and SCP (Fiorenzo

Catalano and Malucelli, 2001; Rahoual et al., 2002) associate pheromone with the compo-

nents in C (items in the MKP, subsets in the case of the SCP). Consequently, pheromone

is used to learn the utility of having a component in a solution or not. Leguizamón and

Michalewicz’s algorithm for the MKP produced good solutions to a number of benchmark

instances, outperforming an EA developed by the authors. Fiorenzo Catalamo and Malu-

celli’s ACO algortihm for SCP did not perform as well as other approaches tested by the

authors on a suite of benchmark instances. Rahoual et al.’s ACO algorithm for the SCP

was tested on a number of benchmark instances and was rarely able to find the optimal so-

lution. However, its results were improved considerably with the addition of a local search

procedure to improve the solutions generated at each generation.

In the edge-weighted KCTP, which consists of finding a subtree with k edges in some

graph such that the weight of included edges is minimal, C represents the set of edges.

An ACO algorithm for this problem examined the use of two pheromone representations

(Blum, 2002b). The first associates pheromone with the edges chosen in the same way as

pheromone for the MKP and SCP. The second is a higher order pheromone representa-

tion (Blum and Sampels, 2002a) that associates pheromone with pairs of edges that are

copresent in a solution. The intention of this representation is to obtain greater informa-

tion about interdependencies between edges. Higher order pheromone representations are

discussed in more detail in Section 4.1. Blum found ACO using the first pheromone rep-

resentation performed best and was also able to outperform a problem-specific heuristic,

while ACO using the second pheromone representation did not perform as well although

still outperformed the same problem-specific heuristic on some instances. Both versions of

the ACO algorithm employed a local search procedure to improve the solutions generated

by the ants.

The MCP involves selecting a subset of connected nodes from a graph (a clique) such

that the size of the clique is maximal. Hence C is the set of nodes. An ACO algorithm
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for this problem also uses a higher order pheromone, associating pheromone with pairs

of nodes to indicate which nodes should be added to a clique given those nodes already

present (Fenet and Solnon, 2003). Thus, for both the KCTP and MCP pheromone has

been associated with pairs of solution components being copresent in a solution. Fenet

and Solnon’s ACO algorithm, which does not employ a local search procedure, was able

to find the optimal solution to a number of difficult benchmark instances, although its

performance is not as good as the best performing specialised heuristic for the MCP.

A SPP consists of a set of constraints and a collection of subsets, each of which covers a

different number of constraints and has an associated weight. The aim is to select a number

of these subsets such that they form a partition of the set of constraints of minimal weight.

This would suggest that solutions should be built from components from C where C is the set

of subsets. However, this problem is highly constrained and constructing solutions in such a

straightforward manner often results in infeasible solutions (Maniezzo and Milandri, 2002).

Maniezzo and Milandri propose an ant-based tree search procedure (cf. the construction

tree defined in Section 2.1) for this problem that takes a different approach. Rather than

selecting subsets until a partition is formed, ants consider each constraint in turn (each

level in the tree represents a constraint) and assign a subset to cover it. Pheromone is then

associated with using a subset to cover a particular constraint in a similar manner to its

use in assignment problems (described in Section 2.4.4 below). While the costs of solutions

produced by this ACO algorithm were not as good as the best performing metaheuristic

for this problem, a GA developed by Chu and Beasley (1998a), the approach was successful

in that the ACO algorithm was able to find feasible solutions.

2.4.2 Permutation/Routing Problems

The TSP, described in Section 2.3.1, is the first problem ant algorithms were applied to

due to the high degree of similarity between ants finding the shortest path to a food

source and artificial ants finding the shortest Hamiltonian cycle in a graph. Consequently,

each major ACO algorithm has been applied to either the symmetric TSP or asymmetric

TSP (ATSP)9 (Bullnheimer et al., 1999b; Cordón et al., 2000; Dorigo et al., 1991; Dorigo

et al., 1996; Gambardella and Dorigo, 1995; Dorigo and Gambardella, 1997b; Guntsch

and Middendorf, 2002b; Stützle and Hoos, 1996). Each of these applications follows the

approach of the first AS for the TSP, with C representing the cities that must be visited and

pheromone being associated with the links between cities/components. A more detailed

description of ACO algorithms for the TSP up to 1999 can be found in Stützle and Dorigo

(1999b).

Early ACO algorithms for the TSP were unable to produce competitive results com-

9An ATSP has at least one edge (i, j) where d(i, j) 6= d(j, i).
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pared with tailored heuristics. While algorithms such as ACS, MMAS and ASrank pro-

duced improved results, the best results have been obtained when local search heuris-

tics were used to improve the solutions produced at each iteration (Dorigo and Gam-

bardella, 1997b; Stützle and Hoos, 2000; Bullnheimer et al., 1999b). Local search heuristics

are typically problem specific, and a number have been described for the TSP (see, e.g.,

Johnson and McGeoch, 1997; Reinelt, 1994).

On large instances (of any problem) it can be computationally expensive to evaluate

every available component’s probability. To make large TSP instances amenable to solution

by ACO various ACO algorithms have made use of candidate sets (also called candidate

lists). A candidate set is a subset of the available components, chosen to reduce the number

of components that must be considered and often consisting of components that appear to

be good to include. In ACS for the TSP, statically generated candidate sets have been used

where, for each city, a set of the cl closest cities is maintained. In effect, these separate

sets of components represent a single set of candidate edges, but it is useful for the TSP

to consider them separately. When constructing solutions, ants consider first only those

components in the appropriate candidate set and, only if that is exhausted, do they examine

the remaining components. The use of static candidate sets has allowed the application of

ACS to TSP instances of more than 1000 cities (Dorigo and Gambardella, 1997a). The use

of dynamically generated candidate sets (that take pheromone information into account)

has also improved algorithm speed as well as achieving improvements in solution quality

(Randall and Montgomery, 2002).

Another problem closely related to the TSP is the vehicle routing problem (VRP),

which occurs commonly in the design of distribution networks such as the postal service

(Bullnheimer, Hartl and Strauss, 1999a). A VRP consists of delivering commodities of

different weights to a number of customers (cf. cities) using vehicles with specific capaci-

ties so as either minimise the number of vehicles used or the total distance travelled. An

added complication is that vehicles must start at and return to a depot. Each vehicle also

has a maximum distance/time for its route. Bullnheimer et al. (1999a) have developed a

version of their ASrank algorithm for this problem. They note that once customers have

been assigned to vehicles, the VRP reduces to a number of TSPs. Hence, their algorithm

is applied to the VRP in the same way as ACO algorithms for the TSP, with the follow-

ing modification. When the current route makes it impossible to select another customer

without violating a vehicle’s capacity, or would exceed the vehicle’s maximum route length,

the next component chosen is the component representing the depot. Bullnheimer et al.

and Doerner et al. (2002) have in their respective ACO algorithms found that using a

more complex heuristic measure than the inverse of the distance between customers can

lead to improved results. Both of these ACO algorithms make use of static candidate sets.
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Bullnheimer et al.’s algorithm was able to find good solutions to a number of benchmark

instances, although these solutions were not as good as those of the best performing algo-

rithms for these problem, while Doerner et al.’s algorithm, which included sophisticated

heuristic information, performed better than a number of alternative metaheuristics.

A variation of the VRP is the VRP with Time Windows (VRPTW) in which each

customer has a time window during which it must be serviced. Gambardella, Taillard

and Agazzi (1999) propose a dual colony ACO algorithm for solving the VRPTW with

a hierarchical objective function, where the first objective is to minimise the number of

vehicles used and the second is to minimise the total time. Unlike other ACO algorithms

for the VRP, one depot for each vehicle is created so that pheromone linking customers

to the depot does not become unduly high. This approach also allows the problem to be

treated exactly like a standard TSP. This approach has also been used by Ellabib, Otman

and Calamai (2002). Both algorithms were found to be competitive with a range of other

metaheuristics for these problems.

The sequential ordering problem with precedence constraints (SOP) can be used in

production planning (Gambardella and Dorigo, 1997). The problem consists of finding

a Hamiltonian path (starting at node 0 and ending with node n) in a node and edge-

weighted graph such that the weight of the included edges is minimised. This is similar to

the machine scheduling problems discussed in the next section. The SOP can be modelled

as an ATSP, with some additional precedence constraints, which is the approach taken

in Gambardella and Dorigo’s (1997, 2000) Hybrid Ant System for the SOP (HAS-SOP).

HAS-SOP is called a hybrid AS because in addition to standard ACS it uses a local search

heuristic to improve the solutions generated, which was a relatively novel feature of ACO

algorithms when it was produced in 1997 (although now it is considered an integral part of

ACO implementations). The ACS component of HAS-SOP is identical to ACS for the TSP

except that N(sp) ensures that precedence constraints cannot be violated. The algorithm

was able to outperform one of the leading heuristics for the SOP.

2.4.3 Scheduling Problems

The scheduling problems described in this section are described in terms of manufacturing,

although they have wider applicability. In general, a scheduling problem involves a number

of operations that must be performed by specific machines or agents in a particular order.

Operations may belong to particular jobs, where operations from the same job cannot be

processed at the same time. The number of machines and jobs varies between different

kinds of scheduling problem. Different orders of operations result in different amounts of

time to complete all operations, called the makespan. The typical aim of these problems

is to minimise the makespan.
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Problems in this group include the single machine total tardiness problem (SMTTP)

(and variants) (e.g., Bauer et al., 1999; den Besten et al., 2000; Iredi et al., 2001; Merkle

and Middendorf, 2001), flow shop (FSP) (e.g., Stützle, 1998), job shop (JSP) (e.g., Blum

and Sampels, 2004; Colorni et al., 1994; van der Zwaan and Marques, 1999) and open

shop (OSP) (Blum and Sampels, 2004) problems. The JSP, OSP and a generalisation

of the two, are described in more detail to illustrate the features of these problems. An

instance of either the JSP or OSP consists of a set of operations O = {o1, o2, . . . , o|O|}
partitioned into the jobs to which they belong J = {J1, J2, . . . , J|J |} and the machines

M = {M1, M2, . . . ,M|M|} on which they must be processed. Only one operation from a

job may be processed at any given time, only one operation may use a machine at any given

time and operations may not be preempted. In the JSP, precedence constraints impose a

total ordering on the operations within each job (i.e., there is a fixed sequence in which

operations must be processed), while operations may be processed in any order in the OSP.

Each operation oi has a non-negative processing time p(oi), and the aim of both problems

is to minimise the makespan, which for a solution s is denoted by C(s). Blum and Sampels

(2002b) describe a generalisation of these problems where operations within each job are

also partitioned into groups G = {G1, G2, . . . , G|G|}, with precedence constraints applying

within groups. This generalisation is called the group shop scheduling problem (GSP),

and is an important problem in the remainder of the thesis. In the JSP, each operation

is assigned its own group (i.e., precedence constraints apply between operations), while in

the OSP all operations within a job belong to a single group (i.e., there are no existing

precedence constraints between operations). Given an existing JSP or OSP instance and

adjusting the number, and hence size, of groups, a range of problem instances may be

constructed with characteristics intermediate between the JSP and OSP.

It is common to represent instances of most permutation scheduling problems as dis-

junctive graphs,10 where directed edges indicate existing precedence constraints (as exist

in the JSP for instance) and undirected edges exist between operations that either require

the same machine or are part of the same job but have no pre-existing precedence con-

straints between them. Operations connected by undirected edges are referred to as being

related (Blum and Sampels, 2002a). Figure 2.5a depicts the disjunctive graph represen-

tation of a small JSP instance consisting of two jobs, both of two operations each. In

this instance, operations 1 and 4 require the same machine, as do operations 2 and 3. A

schedule for such problems may be created by assigning directions to undirected edges in

the graph to create a directed acyclic graph. Each operation is then scheduled as early as

10A disjunctive graph is a directed graph that contains disjunctive edges. A disjunctive edge (i, j) is
the superposition of an edge from i to j and an edge from j to i, where only one of the edges may be
present in any non-disjunctive graph derived from the original disjunctive graph. Hence, a disjunctive edge
is equivalent to a single undirected edge that must be assigned a direction.
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s3: 2314 �� ,   C(s3) = 60 

(b) 

s2: 2341 �� ,   C(s2) = 40 

s1: 3241 �� ,   C(s1) = 60 

(a) 

1 2 

3 4 

Figure 2.5: A JSP instance described by Blum and Sampels (2002b). a) A small JSP
instance with O = {1, 2, 3, 4}, J = {J1 = {1, 2}, J2 = {3, 4}}, 1 ≺ 2, 3 ≺ 4, M =
{M1 = {1, 4}, M2 = {2, 3}}, p(1) = p(4) = 10, p(2) = p(3) = 20. i ≺ j indicates i must
be processed before j. b) The three solutions to this problem described in terms of the
relative order of operations that require the same machine.

possible given the precedence constraints imposed by this directed graph. The list scheduler

algorithm is a constructive algorithm for these problems that ensures that cycles cannot be

created in the disjunctive graph. It creates a permutation of the operations to be scheduled

by successively choosing from those operations whose required predecessors have already

been placed in the permutation. The relative order of related operations is determined by

their relative positions in the permutation. Consequently, these problems are often called

permutation scheduling problems. ACO algorithms for such problems use the list scheduler

approach to construct solutions. Hence, O ≡ C and N(sp) contains only those operations

whose required preceding operations already appear in sp.

The JSP is the first permutation scheduling problem to which ACO was applied. Col-

orni, Dorigo, Maniezzo and Trubian (1994), influenced strongly by their work on the TSP,

developed an ACO algorithm for the JSP. The construction graph they define is made up

of the operations to be scheduled plus an additional node representing the empty sequence

from which ants start. This extra node is required as pheromone is associated with the

edges of the graph and, unlike the TSP, it is important to know which operation appears

first in the schedule. Van der Zwaan and Marques (1999) describe an ACO algorithm sim-

ilar to Colorni et al.’s, with only minor changes to the way pheromone is updated. Neither

of these approaches was considered highly effective, obtaining results 8–9% worse than the

optimal solution (Colorni et al., 1994; van der Zwaan and Marques, 1999).

Departing from the original TSP inspired approach, the majority of later ACO algo-

rithms for scheduling problems associate pheromone with the absolute position of an oper-

ation in the permutation. This innovative approach removes the need for an artificial start

node and appears better suited to describing permutations than associating pheromone

with pairs of adjacent components. This approach has been used in ACO algorithms for

the FSP (Stützle, 1998; T’kindt, Monmarché, Tercinet and Laügt, 2002) and single machine

total tardiness problems (Bauer et al., 1999; den Besten et al., 2000; Merkle and Midden-

dorf, 2000; Merkle and Middendorf, 2001), where the aim is to reduce the amount of time

each job is late, and resource constrained project scheduling (RCPS) (Merkle, Middendorf

31



and Schmeck, 2000). In general this pheromone representation has been more successful

than the TSP inspired pheromone used in initial applications. The latter approach is still

used, however, such as in an ACO algorithm for a SMTTP with sequence-dependent setup

times (Gagné, Price and Gravel, 2002). The two kinds of pheromone have also been used

in combination in an ACO algorithm for the SMTTP with changeover costs (Iredi, Merkle

and Middendorf, 2001). This version of the SMTTP has two objectives, to minimise job

tardiness and to minimise costs associated with certain operations being scheduled imme-

diately after certain other operations. Iredi et al. associate pheromone with the edges of

the construction graph in order to minimise changeover costs, as these are associated with

one operation immediately succeeding another. However, for minimising tardiness they

associate pheromone with the absolute position of operations in the sequence.

To counteract some empirically observed problems with pheromone associated with

the absolute position of operations in a solution sequence, Merkle and Middendorf (2000,

2002) suggest two alternative schemes for interpreting and updating pheromone values,

called summation evaluation (Merkle and Middendorf, 2000) and relative pheromone eval-

uation (Merkle and Middendorf, 2002). Both schemes still associate pheromone with the

absolute position of an operation in a sequence, but interpret and update the information

differently. While the summing evaluation method was found to improve results compared

to the standard way pheromone information is used, relative pheromone evaluation was

found to produce the best performance. These approaches are discussed in more detail in

Section 6.2.3.

Blum and Sampels (2002a) studied four different pheromone representations for the

GSP: pheromone on edges of the construction graph; pheromone on the absolute position

of operations in a sequence; pheromone on the absolute position with Merkle and Midden-

dorf’s (2000) summing evaluation; and a novel approach, pheromone on the precedence

relationship established between pairs of related operations. The latter pheromone is asso-

ciated only with pairs of related operations and is used to learn the utility of placing one of

the operations before the other in the sequence, or more briefly, to learn relations (Blum

and Sampels, 2002a). Hence it takes account of the dependencies between operations that

require the same machine or which are part of the same job more directly than any of the

other three pheromones. Blum and Sampels found that this pheromone outperformed the

other three. Additionally, results for the other three pheromones support other findings

in the literature, that associating pheromone with the edges of the construction graph for

these problems generally performs worst, while associating pheromone with the absolute

position of operations in a sequence is better, and is improved by the use of summing

evaluation.
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2.4.4 Assignment Type Problems

Assignment type problems (ATPs) involve the allocation of resources to items subject to

a number of constraints (Costa and Hertz, 1997). Thus, the distinguishing characteristics

of these problems are that they contain two distinct types of entity, items and resources,

and that while all items must be assigned a (typically single) resource, the number of

items assigned to one resource can vary from zero to many depending on the problem.

This category of problems includes the generalised assignment (GAP) (e.g., Lourenço and

Serra, 2002), quadratic assignment (QAP) (e.g., Stützle and Dorigo, 1999a), frequency

assignment (FAP) (e.g., Maniezzo and Carbonaro, 2000), graph colouring (GCP) (e.g.,

Costa and Hertz, 1997), bin packing (BPP) and cutting stock (CStockP) (e.g., Ducatelle

and Levine, 2004) problems. Due to their special features, ACO algorithms for the GCP,

BPP and CStockP are discussed in the next section.

The GAP is described in more detail as it represents the archetypal assignment problem

and is used as a key problem for later investigations in the thesis. The GAP is a resource

allocation problem in which each of n tasks Cit (i.e., items) must be assigned to exactly

one of m agents Cres (i.e., resources), where m < n in general. Each possible assignment

(i, r) ∈ Cit × Cres has an associated cost, and uses a certain amount of agent r’s capacity.

The aim of the problem is usually to minimise the total cost of assignments while respecting

capacity constraints on agents.

In those ACO algorithms for which the construction graph has been described explicitly,

ants typically move alternately between nodes representing items and nodes representing

resources, as is depicted in Figure 2.6a. If the start node 〈〉 is removed, such a graph

is consequently bipartite. All ACO algorithms for the GAP, QAP and FAP associate

pheromone with the assignment of an item to a resource. In terms of this construction

graph, this corresponds to associating pheromone with edges from items to resources.

However, no pheromone is associated with edges leading back from resources to items,

as such moves do not reflect a feature of the solution being constructed. Indeed, ACO

algorithms for these problems typically determine an order in which to assign items and

build solutions as sequences of resources, equivalent to the simpler construction graph

depicted in Figure 2.6b. Consequently, components from Cit are implicit in the sequences

that ants construct from components in Cres. Costa and Hertz (1997) describe a general

framework for solving ATPs where two pheromones are used, one to select the next item to

be assigned and another to determine which resource to assign to which item. Assignment

orders for the GAP and QAP are discussed in more detail in Section 3.3. ACO algorithms

for the GAP (Lourenço and Serra, 2002; Randall, 2004) have taken this latter approach, and

associate pheromone with the assignments made. The addition of a local search procedure

improved results for both algorithms significantly. Lourenço and Serra found that their
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Figure 2.6: Two alternative construction graphs for assignment problems. The set of items
Cit = {i1, i2, i3, i4}. The set of resources Cres = {r1, r2, r3, r4}. a) items appear as nodes in
the graph. b) assignment order known, so only resources appear in graph. Dashed lines
represent undirected edges that are implicitly assigned a direction as they are traversed by
an ant.

ACO algorithm (with local search) was able to outperform a number of other metaheuristics

for the GAP.

The QAP is a facility layout problem, with applications in building and office layout,

keyboard design and scheduling (Stützle and Dorigo, 1999a). It consists of assigning n

facilities (i.e., items) to n locations (i.e., resources), with exactly one facility assigned to

each location. The aim is to minimise the total cost of flows between facilities (determined

by a mixture of the distance between locations and the amount of flow required between

facilities). Many ACO algorithms have been developed for this problem (e.g., Cordón

et al., 2002a; Dorigo et al., 1996; Maniezzo, 1999; Maniezzo and Colorni, 1999; Stützle,

1997; Taillard and Gambardella, 1997). Many of these ACO algorithms produced results

competitive with alternative solution approaches. Different assignment orders may affect

the performance of ACO on this problem, and are discussed by Stützle and Dorigo (1999a)

and also in Section 3.3. Several different kinds of heuristic information have also been

developed, although they are not discussed further as they are not within the scope of

this thesis. Additionally, some ACO algorithms for this problem have not used heuristic

information (e.g., Stützle, 1997; Taillard and Gambardella, 1997).

Assignment of Items to Groups

Some assignment problems involve “resources” which are indistinguishable from one an-

other and serve only to provide groups to which items can be assigned. It is convenient

to refer to such problems as group assignment problems. Unlike the GAP, where two or

more tasks may be assigned to the same agent and hence, appear to be in the same group,

groups in these problems have no distinguishing characteristics, the important feature is

which items are in the same group. The archetypical group assignment problem is graph
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colouring. The GCP involves the assignment of colours to nodes in a graph such that no

adjacent nodes are assigned the same colour. The actual colours assigned typically have

no significance, serving only to create groups of nodes of the same colour. An assignment

of colours to nodes that uses k colours is referred to as a k-colouring. The problem may be

formulated either so that the number of colours used is minimised or that the number of

colour conflicts (i.e., adjacent nodes with the same colour) is minimised for a given value

of k.

Costa and Hertz (1997) describe two alternative ACO algorithms for the GCP, based

on the order in which nodes are assigned colours. Both algorithms seek to minimise the

number of colours required to create feasible colourings. The first variation constructs

solutions by iteratively selecting the uncoloured node with the greatest number of colours

assigned to its neighbours (i.e., adjacent nodes in the graph), and then assigning it either

a colour from those already used in the partial solution or the next unused colour if all of

the currently used colours would create a conflict. A construction graph for this approach

would resemble that in Figure 2.6b. The second variation iterates through colour groups,

assigning nodes to the current colour group until no more nodes can be assigned without

creating a conflict, and then progressing to the next colour group. Nodes are examined

in non-increasing order of degree. A construction graph for this approach would resemble

that in Figure 2.6b with items and resources reversed. This second algorithm was able

to outperform a number of other heuristic approaches for the GCP on large randomly

generated graphs. Both variations associate pheromone with pairs of non-adjacent nodes

assigned the same colour. The same approach is used in Ducatelle and Levine’s (2001,

2004) ACO algorithms for the BPP and CStockP, where colour groups are replaced by

bins and stocks respectively. Their algorithm for the CStockP outperformed a leading EA

for that problem, while their algorithm for the BPP was less competitive against good

heuristics for that problem.

Timetabling Problems

Timetabling problems often closely resemble the GCP, in that events (i.e., nodes, items)

must be assigned to timeslots (i.e., colours, resources) without causing a clash (i.e., two

events requiring the same participants being scheduled at the same time). Socha, Knowles

and Sampels (2002) developed an ACO algorithm for a university course timetabling prob-

lem (UCTP) in which ants construct solutions by walking a construction graph of the kind

depicted in Figure 2.6a. The UCTP being solved requires that only feasible timetables be

created, with the aim of the problem being the minimisation of a number of soft constraints

regarding good timetable design in terms of the students involved. They investigated the

use of two different pheromone representations. The first associates pheromone with the
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assignment of an event to a timeslot, in the same way as ACO algorithms for the GAP,

FAP and QAP associate pheromone with the assignments made. The second pheromone

is associated with pairs of events being assigned the same timeslot, as in the pheromone

representation used with the GCP, BPP and CStockP. The second was expected to per-

form better, given the similarity between the GCP and timetabling problems in general.

However, the first pheromone was found to produce better results, suggesting that it learns

more effectively about features of solutions that affect the soft constraints which were be-

ing optimised. Using the first pheromone representation the algorithm was found to be

competitive with alternative metaheuristics for this problem.

2.4.5 Constraint Satisfaction Problems

Constraint satisfaction problems (CSatPs) differ from typical COPs in that there is often

no objective function to optimise, merely a set of constraints to satisfy. Commonly, they

are formulated as maximal satisfaction problems, where the objective is to maximise the

number of satisfied constraints.

One of the first applications of ACO to constraint satisfaction was Solnon’s (2000) Ant-

P-Solver for solving permutation satisfaction problems. Solutions to these problems are

represented as a permutation of a set of values, where each position corresponds to the

variable being assigned that value. Ant-P-Solver uses a construction graph in which ants

move from an artificial start node to each value to be placed in the permutation in a similar

way to ants constructing solutions to the QAP. However, the pheromone used is associated

with the edges of this graph, in the same manner as ACO algorithms for the TSP and SOP.

Ant-P-Solver achieves reasonable results on some problem instances. Gottlieb et al. (2003)

use an ACO algorithm based on Ant-P-Solver to solve a car sequencing problem. The

formulation of the car sequencing problem they solve is a constraint satisfaction problem

in which a permutation of cars, each with a different set of options, must be devised such

that the various stations along the production line can cope with the number of options

of each type within a given amount of time. Gottlieb et al. found their ACO algorithm

produced results comparable with a local search procedure.

More general constraint satisfaction problems have been tackled by Schoofs and Naudts

(2000), Solnon (2002) and Roli, Blum and Dorigo (2001). These more general problems

cannot be solved as permutations as each variable has its own domain which may overlap

with other variables. All three approaches define a construction graph in which each node

represents a variable–value pair, depicted in Figure 2.7. The ACO algorithms of Schoofs

and Naudts and Solnon take a similar approach to those for the GAP. At each step, ants

choose a variable to assign (various approaches to selecting the next variable are described

by Schoofs and Naudts and Solnon). Next, ants use pheromone information to choose which
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Figure 2.7: Alternative construction graph for assignment problems such as constraint
satisfaction problems. In this example constraint satisfaction problem, the set of variables is
Cit = {x1, x2, x3}, while the set of values Cres = {v1, v2}. Dashed lines represent undirected
edges that are implicitly assigned a direction as they are traversed by an ant.

value from that variable’s domain to assign. In both algorithms, pheromone is associated

with pairs of assignments. However, when using pheromone information to decide the

value to assign to a variable i, Schoofs and Naudts only consider pheromone values for

other variables already assigned that appear in the same constraints as i, while Solnon

uses pheromone between all assignments currently made and the candidate assignment.

Schoofs and Naudts found that their ACO algorithm outperformed a number of EAs for

this problem. Solnon does not give comparative results for ACO and other metaheuristics,

although did find that adding a local search procedure improved results.

Roli et al.’s (2001) ACO algorithm works somewhat differently, in that at each step

any variable–value pair may be chosen provided that the variable in question is currently

unassigned. Three different pheromone representations are considered: pheromone associ-

ated with individual assignments (i.e., the components in their specification); pheromone

associated with one assignment being made immediately after another assignment (i.e.,

the links in the construction graph); and pheromone on pairs of assignments. The latter

pheromone is effectively the same as that used by Solnon. Associating pheromone with

either single assignments or collections of assignments performed well, while associating

pheromone with links in the construction graph resulted in poor performance.

2.4.6 Other Problems

ACO has also been applied to a number of problems which do not fit easily into the

categories already examined. However, the method of applying ACO in each of these has

typically been similar to one of the approaches described above. The last two examples,

ACO algorithms for the shortest common supersequence and for the scheduling of aircraft

landings, are atypical in their respective approaches to pheromone usage and solution

construction.
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2D HP Protein Folding

Proteins are chains of amino-acids, with the function of a particular protein determined

by the shape it takes when its chain folds up (Shmygelska, Aguirre-Hernández and Hoos,

2002). The shape of a protein when it is folded is difficult and expensive to determine,

although the amino-acids in its chain may be more easily identified. Thus, being able to

predict how a protein will fold and thereby determine its shape is an important problem in

biochemistry. There are a number of models for predicting protein folding, one of which is

the 2D Hydrophobic-Polar (2D HP) model. This model views amino-acids as belonging to

either one of two groups, hydrophobic or polar, and represents a conformation (folding) of

an amino-acid chain as a self-avoiding path on a 2D square lattice. The aim of this problem

is to minimise the number of amino-acids labelled as hydrophobic that are adjacent on

the lattice. Shmygelska et al. (2002) have developed an ACO algorithm for this problem

(referred to as 2DHPPF hereafter) that begins solution construction by selecting a random

amino-acid in the chain to be folded and placing it on a point in the grid. Rather than

associate pheromone with the particular location in the grid to which an amino-acid is

assigned, they associate pheromone with the relative change in direction of the chain from

each amino-acid: left, right, or straight ahead. This takes account of the way the chain is

folded regardless of how the folded structure may be rotated on the lattice. Consequently,

they have transformed the problem into a type of assignment problem, where each amino-

acid is assigned a direction to fold the rest of the chain from that point. Their algorithm

produces some of the best results available for this problem.

Bus Driver Scheduling

Forsyth and Wren (1997) describes an ACO algorithm for scheduling bus drivers (the prob-

lem is referred to as BUS hereafter). The problem involves the assignment of drivers to

periods of work such that the number of drivers required to cover all work is minimised,

while respecting constraints related to the length of drivers’ shifts, breaks for drivers be-

tween spells of work, and changeover times between drivers. Rather than use ACO to

solve the entire problem, which is computationally intensive, a number of possible shifts

are precomputed using another algorithm and ACO is used to select possible start times

for a shift and then assign a shift that is available to start at that time. Thus the problem

is modelled as an assignment problem, and pheromone is associated with the assignment of

a shift to a particular starting time. This ACO algorithm was not found to be competitive

with an existing system for the problem.

38



Network Synthesis

Telecommunication network synthesis (abbreviated to NETSYNTH hereafter) involves de-

veloping a network topology and bandwidth allocation between nodes for a telecommuni-

cation network (Berry, Murtagh, McMahon, Sugden and Welling, 1999). The only ACO

algorithm for this kind of network synthesis problem, due to Randall and Tonkes (2001),

does not use ants to explicitly solve either the topology or bandwidth allocation aspects of

the problem. Instead, a set of routes (up to some maximum length) is precomputed, and it

is from these that ants build their solutions. Bandwidth allocation is left to a subordinate

heuristic. Rather than consider all possible routes, the proportion of routes to be randomly

produced is a parameter of the algorithm. Pheromone is associated with the routes chosen

to form each ant’s solution. Consequently, the problem is solved in the same manner as

knapsack problems. This ACO algorithm was able to find improved solutions compared to

an alternative iterative metaheuristic developed by Randall (2000).

Shortest Common Supersequence Problem

The shortest common supersequence problem (SCSP) consists of creating a minimum

length string of characters from some alphabet Σ such that it is a supersequence of a set L

of other strings (i.e., any of the other strings may be produced by deleting characters from

the solution) (Michel and Middendorf, 1999). The problem has various applications, for

instance in the quite different fields of genetics and manufacturing, where Σ could represent

genes on a chromosome or machines in a production line respectively. An ACO algorithm

for this problem developed by Michel and Middendorf constructs solutions in the following

way. Solutions are constructed from the characters in Σ, so Σ ≡ C. Furthermore, unlike

the majority of ACO implementations, components in C may—generally must— appear

multiple times in a solution. Throughout the solution construction process, the algorithm

keeps track of how many characters from the start of each string in L have been included

in the partial supersequence. The front of each string in L is the next character that can

be added to the supersequence. At each step, the set of candidate characters consists of

the next character to include from each string. A pheromone value is associated with each

character from the strings in L. However, the decision to include a candidate character

c ∈ C is based on a single pheromone value derived by summing pheromone values associ-

ated with next character in the strings in L where that character is c. Thus, a candidate

character is more likely to be selected if it appears at the front of a relatively high number

of strings and if the pheromone associated with that character at those positions in those

strings is relatively high. This differs from more typical pheromone representations in that

individual pheromone values have no meaning outside of the constructive process used as

each will contribute to the inclusion of a character at some point in a single solution’s
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construction. In more typical pheromone representations the pheromone value associated

with each solution component may be considered without that solution component being

added to the solution.

Michel and Middendorf compared the ACO algorithm against a specialised heuristic and

a GA, finding its performance was better than the specialised heuristic and comparable to

that of the GA. With the addition of a lookahead function, the ACO algorithm was able

to outperform the GA on some problem instances. The lookahead function heuristically

estimates the utility of each candidate component by considering the quality of partial

solutions that could be reached in the step after the current one if that candidate were

chosen.

Aircraft landing scheduling

The static single runway aircraft landing problem (abbreviated to AIRLAND hereafter)

involves the allocation of landing times to planes such that allocated times are within

each plane’s landing window while minimum separation times between different types of

aircraft are respected (Randall, 2002b). Each plane has a preferred (most economical)

landing time, and the aim of the problem is to minimise the difference between actual and

preferred landing times, with different penalty rates for earliness and lateness. The problem

can be solved as either a scheduling problem similar to the SMTTP, or as an assignment

problem. If modelled as a scheduling problem, solutions could be sequences of planes,

with a subordinate heuristic allocating planes as near to their preferred landing times

as possible. Randall’s ACO algorithm for this problem takes the second approach, with

planes being considered in a randomised order for assignment of landing times. However,

unlike the assignment problems considered in Section 2.4.4, where |Cit| ≥ |Cres|, in this

problem |Cit| � |Cres|. Furthermore, the differences between resources (i.e., timeslots) are

gradual—each resource is not distinct as in the GAP and QAP, but similar to a number of

other resources (nearby timeslots). Randall divides each plane’s time window into a fixed

number of contiguous regions, with pheromone associated with the assignment of a plane

to a timeslot within a particular region. Therefore, while assignments are still made to

individual timeslots, all timeslots in the chosen region receive an increase in their associated

pheromone. The implications of this use of pheromone are discussed in Section 6.2.4.

Results of the ACO algorithm applied to a number of benchmark instances showed

it to be competitive with a specialised heuristic developed by Beasley, Krishnamoorthy,

Sharaiha and Abramson (2000).
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2.5 Formalisations of ACO

Accompanying the maturation of the ACO field have been a number of efforts to formalise

and analyse the algorithm. For instance, some have developed convergence proofs for

specialised classes of ACO algorithms (e.g., Gutjahr, 2000, 2002; Meuleau and Dorigo,

2002; Stützle and Dorigo, 2002), while others have developed generalised forms of the

algorithm (Gutjahr, 2000, 2002) and frameworks for describing and analysing the algorithm

(Birattari et al., 2002). These last two are of particular relevance to this thesis and are

discussed in more detail.

2.5.1 Graph-based Ant System

Gutjahr (2000, 2002) describes a theoretical generalised ACO algorithm called Graph-

Based Ant System (GBAS). The GBAS literature was some of the first to use the term

construction graph to describe the way ants may sequentially add solution components

to produce a solution. In the GBAS, ants construct directed walks in a construction

graph which represents, possibly in abstract form, a solution to the problem being solved.

A problem-specific function Φ transforms walks in the construction graph into feasible

solutions. According to Gutjahr, nodes may appear at most once in a walk and pheromone

information is associated only with the links in the graph. This definition is far more

strict than the description of ACO given in Section 2.2, and indeed in the rest of the

ACO literature (e.g., Dorigo and Di Caro, 1999; Dorigo et al., 1996; Dorigo and Stützle,

2004). The GBAS achieves its generality by requiring that all problems be transformed into

shortest path problems on a (construction) graph. Thus, the underlying ACO algorithm

employed remains unchanged regardless of the problem to which it is applied, with only

the construction graph specified for its use and the function Φ being problem-specific.

GBAS is as yet only a theoretical system, and no attempt has been made to describe

how the function Φ may be described and given to the system, a critical step in terms of

implementation.

This approach is conceptually appealing, as it provides a framework into which all prob-

lems may be fitted with a uniform treatment of pheromone information. However, despite

the convergence proofs Gutjahr develops for this algorithm, much of the optimisation lit-

erature suggests that solutions should be produced (or modified) in ways that are tailored

to suit the problem in question (e.g., Birattari et al., 2002; Michalewicz, 1996). Moreover,

much of the ACO literature suggests that pheromone representations should be chosen to

match the problem, rather than the constructive algorithm used (Birattari et al., 2002).
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2.5.2 Ant Programming

Birattari et al. (2002) describe a general framework for the description and analysis of a

range of constructive optimisation algorithms (including ACO) called ant programming.

Ant programming combines a number of ideas from the fields of dynamic programming, re-

inforcement learning and ACO. A central part of its approach is to consider the application

of a constructive optimisation algorithm to a problem as a multi-stage decision process, a

concept from dynamic programming. In terms of ACO, each decision corresponds to the

addition of a solution component to a partial solution. Dynamic programming, and hence

ant programming, place an emphasis on the state of a constructive process, where each

state is equivalent to a partial solution to the problem being solved. In ACO, transitions

between states occur when a component is selected and added to a partial solution (the

previous state), to produce a more complete partial solution or complete solution (the next

state). In the most general case, the states can be arranged in a tree, where each node

corresponds to one state and transitions form the edges between states, equivalent to the

construction tree described in Section 2.1.1.

The aim of an algorithm in the ant programming framework is to derive an optimal con-

trol policy (a concept borrowed from dynamic programming) that will guide the process

through a number of states until a final state is reached that corresponds to the optimal

solution. In other words, the state graph is a representation of the space of solutions, and

presents an alternative form of the problem to be solved. In addition to this state graph,

Birattari et al. (2002) describe a representation graph, which corresponds to the space of

actual solutions to the problem being solved. While decisions made by a constructive op-

timisation algorithm concern the next state (partial solution) to move to given the current

state, decisions are informed by the partial solution that each state represents. In par-

ticular, Birattari et al. point out that in ACO algorithms the pheromone representation

used should typically correspond to the solutions represented rather than the sequences

produced by the algorithm. Ant programming presents some important concepts that are

useful in the remainder of this thesis. First is its analysis of the space of partial sequences,

which is the subject of Chapters 3 and 5. Second is its emphasis on the role of the space

of solutions (Birattari et al. use the term representations) in which ants must make their

decisions, which is important when considering the nature of the pheromone representation

that should be used with a problem. This issue is discussed in the next section, and then

is the subject of Chapters 4, 5 and 6.
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2.6 Divergence of Construction Graph and Pheromone

Representation

Given that ACO is based on the foraging behaviour of ants—clearly a shortest path

problem—it may seem natural and even essential that the same restriction be imposed

on applications of ACO to various optimisation problems. Certainly, the development of a

construction graph is considered of crucial importance in much of the ACO literature (e.g.,

Bauer et al., 1999; Colorni et al., 1994; Dorigo et al., 2000; Dorigo and Di Caro, 1999; Dorigo

et al., 1996; Dorigo and Stützle, 2002; Fenet and Solnon, 2003; Gottlieb et al., 2003; Roli

et al., 2001; Solnon, 2002; Socha et al., 2002; Stützle and Dorigo, 1999a). However, ACO

algorithms have increasingly been applied to problems that show a marked divergence from

classic shortest path problems like the TSP. Consequently, construction graphs for these

problems can be highly contrived and may offer little assistance in determining an appro-

priate pheromone representation. Birattari et al. (2002) suggest that a suitable pheromone

representation should be carefully chosen by considering the problem being solved and not

the construction graph used to define the construction process. All these factors have led

to the ad hoc application of several novel pheromone representations that do not asso-

ciate pheromone with any obvious feature of the construction graph, some of which have

performed poorly.

This pervasive emphasis on the use of construction graphs in ACO has the potential to

misrepresent the role of the construction graph in the ACO metaheuristic. The construction

graph for problems such as the TSP not only defines the solutions that may be built, but

is also a good analogue of the environment in which real ants forage for food. However,

modelling all problems using such a graph does not mean that artificial ants are necessarily

solving the same kind of problem as real ants. Indeed, as the following examples illustrate,

the construction graph is often used in ways that depart quite strongly from shortest path

problems like the TSP and real ants’ foraging behaviour.

The construction graph implicitly defined in ACO algorithms for subset problems such

as the MKP, SCP and KCTP has C as the set of items with L fully connecting the elements

of C (similar to Figure 2.4). Each node visited in a walk in this graph corresponds to the

inclusion of that item in the solution. However, as Leguizamón and Michalewicz (1999)

suggest, there is no real concept of a path in these problems. Hence, even if pheromone

is associated with the items (an intuitive choice used in several ACO algorithms for these

problems), considering these problems in a terms of a graph is quite artificial. Even in

the application of ACO to the MCP, where the construction graph is identical to the

graph from which nodes are selected to form a clique, Fenet and Solnon (2003) associate

pheromone with edges between all pairs of nodes in the clique under construction. Thus,
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the pheromone values associated with a solution do not correspond to a single path.

For assignment problems, a suitable construction graph could be defined as GC =

(Cit ∪ Cres, L = {(ci, cj)|ci ∈ Cit, cj ∈ Cres}) depicted in Figure 2.6a. Indeed, this has

previously been suggested by Stützle and Dorigo (1999a). However, for most assignment

problems only edges in one direction in this graph represent assignments, and as it is with

these that pheromone is associated, other edges in the graph are superfluous. In fact, the

majority of ACO algorithms for assignment problems use a construction graph like that

depicted in Figure 2.6b with the item being assigned implicit in the solution construction

process rather than the construction graph.

ACO algorithms for constraint satisfaction, a special type of assignment problem, have

used the construction graph GC = (C = {(xi ∈ X, d ∈ Di}, L = {(ci, cj)|ci, cj ∈ C, c1
i 6= c1

j}),
where xi is a variable, X is the set of all variables, d is a value from xi’s domain Di,

and c1
i is the first part of the couple represented by ci. The best performing pheromone

representations for these problems have associated pheromone either with the elements

of C (i.e., the assignments, as in pheromone used in most other assignment problems) or

with pairs of assignments made, similar to the pheromone used for the MCP. In contrast,

algorithms that associate pheromone with the edges of the construction graph traversed

by ants perform rather poorly (Roli et al., 2001).

Costa and Hertz’s (1997) ACO algorithm for the GCP, and Ducatelle and Levine’s (2001,

2004) ACO algorithm for the BPP and CSP both associate pheromone with pairs of items

being assigned to the same group (colour in the case of the GCP, bins and stocks in the

cases of the BPP and CStockP respectively). While this pheromone representation is in-

tuitively appropriate for these problems, it cannot be easily reconciled with walks in any

construction graph that could be defined to represent how ants construct solutions to these

problems.

Bauer et al. (1999) consider two alternative construction graphs for the SMTTP. The

first is a GBAS inspired state-oriented construction graph, similar to that depicted in

Figure 2.3, with pheromone associated with the edges linking solution states. However,

this was not used due to its enormous size (O(2n) nodes when scheduling n operations),

prompting the development of a greatly simplified construction graph like that used in

ACO algorithms for other scheduling problems. As with many ACO algorithms for such

scheduling problems, pheromone is associated with the absolute position of an operation

in a solution sequence, a feature not directly related to the construction graph.

The ACO algorithm for a UCTP of Socha et al. (2002) is described in terms of a

construction graph consisting of nodes for events (i.e., items) and nodes for times (i.e.,

resources). However, neither of the pheromone representations they consider (pheromone

on assignments, or pheromone on pairs of events assigned the same time) relates to a
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feature of the walks ants create in this construction graph to produce solutions.

From the above examples, it is evident that ACO has been applied to numerous prob-

lems that are not naturally described in terms of graphs. The construction graph therefore

serves to describe how ants may build solutions, although it is often insufficient to describe

the whole construction process as extra constraints must be used to ensure that ants make

feasible walks in the construction graph. Thus there has been a divergence between the

construction graph as a means of representing the construction process and the construc-

tion graph actually representing the space of solutions (for some problems such as the TSP

they are identical). As the construction graph has become primarily a means to specify the

constructive process, it is the pheromone representation that determines how solutions are

modelled by the algorithm. Consequently, new pheromone representations have had to be

developed for many problems as walks in the construction graph do not describe solutions

adequately, or must be mapped to solutions.

2.6.1 Constructive Heuristics and Virtual Construction Graphs

Given that construction graphs typically only define the construction process, and often

given little information about the pheromone representation used, it may be useful to define

a simple unifying framework: the virtual construction graph. As shown in Figures 2.2

and 2.3, the sequence or solution space that any constructive algorithm explores may

be represented by means of a graph. However, that does not mean that the solution

construction process must be defined in terms of that graph. For instance, constructive

metaheuristics such as GRASP (Feo and Resende, 1995) are typically not defined in terms

of a construction graph.

An ACO algorithm and its associated virtual construction graph may be developed in

the following way. As described in Section 2.1, the algorithm A defines the components

C from which solutions are built, the components that may be chosen at each step N and

the mapping from sequences of solution components to solutions Sp. It may be that a

construction graph is used as part of the definitions of N and Sp, but this is not required.

Depending on the particular problem being solved, additional entities may also be defined,

such as the set of items Cit in an assignment problem. A pheromone representation can

then be developed that relates aspects of the solutions or sequences produced to individual

pheromone values that can be used to influence the selection of solution components. This

aspect of applying ACO is the subject of Chapters 4 and 6.

Given A, a virtual construction graph may be defined as Gvirt
C = (Cvirt, Lvirt), where

Cvirt and Lvirt are sets of virtual constructive components and constructive links respec-

tively. The definition of Cvirt depends on the way in which A views sequences and solutions.

Define two (partial or complete) sequences sp
1 and sp

2 as equivalent in the constructive algo-
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rithmA, denoted≡A , if and only if ssp
1

= ssp
2
, N(sp

1) = N(sp
2), Ssp

1
= Ssp

2
, and the probability

of selecting any component in N(sp
1) is identical for both sequences. That is, two sequences

are equivalent if they represent the same partial solution, may be augmented by the addi-

tion of the same solution components with the same probability, and can become the same

complete solutions. For example, given sequences sp
1 = 〈1, 2, 3〉 and sp

1 = 〈1, 3, 2〉 in an ACO

algorithm A for the MKP that associates pheromone with the items chosen, sp
1 ≡A sp

2. This

can be seen in Figures 2.2 and 2.3. Given this definition of ≡A , the set of all partial and

complete solution sequences defined by A may be partitioned into subsets of equivalent

sequences. Each of these subsets corresponds to an element of Cvirt (see Figure 2.3). The

set of virtual (directed) links Lvirt can then be defined as Lvirt = {(cvirt
i , cvirt

j ) | cvirt
i , cvirt

j ∈
Cvirt such that a sequence in cvirt

j can be reached from a sequence in cvirt
i }.

Given this definition of a virtual construction graph, each virtual link corresponds to one

step of the constructive algorithm in question. It follows that a pheromone value may be

implicitly associated with each virtual link. Which pheromone value from the underlying

pheromone representation is used depends on the algorithm’s implicit definition of ≡A .

Similarly, heuristic information may also be implicitly associated with each link. The

utility of a virtual construction graph is that it can be defined for any ACO algorithm,

regardless of how that ACO algorithm’s constructive process is defined, not that it must

be defined. Consequently, its existence can justify the examination of ACO algorithms

without the need to define a construction graph, nor the requirement that the pheromone

representation be defined in terms of a construction graph. Neither of these are essential

features of the constructive heuristics and ACO algorithms discussed in the remainder of

the thesis.

2.7 Local Search in ACO

In general, the solutions built by constructive metaheuristics are improved by the appli-

cation of a local search procedure (Dorigo and Stützle, 2002; Feo and Resende, 1995),

and as many of the example ACO applications described in Section 2.4 demonstrate, the

performance of ACO is better when local search is used to improve constructed solutions

before pheromone is updated. Consequently, local search is now considered to be an in-

tegral part of ACO applications, with the ACO algorithm providing good starting points

for local search (Dorigo and Stützle, 2002, 2004). However, local search procedures for the

problems to which ACO may be applied are not studied in detail in this thesis, with the

following rationale.

Local search forms the basis of iterative optimisation heuristics and metaheuristics, and

so local search techniques for a wide range of COPs have been extensively studied. As a
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result, powerful local search procedures are available for many problems to which ACO

may be applied. However, comparatively little research has been conducted concerning the

systematic adaptation of ACO to suit different problems. Given the poor performance of

some ACO algorithms, there is clearly scope to improve the way ACO is applied to certain

problems and to improve more generally the process by which it is adapted to suit new

problems.

This thesis assumes that ACO is capable of producing good solutions in the absence

of local search if it is applied correctly, a claim supported by results in the ACO literature

(Dorigo and Stützle, 2004). If this is not the case then the utility of ACO as an optimisation

technique would be called into question. Implicit in this assumption is the view that the

addition of a powerful local search procedure is an unsatisfactory remedy for a poorly

implemented ACO algorithm, and consequently that the existence of powerful local search

techniques should not preclude investigation into improvements to the ACO algorithm.

In large part, analysis of the ACO algorithm and factors affecting its performance does

not require the effects of local search to be considered. Nevertheless, analysis of alternative

approaches to the application of ACO to the TSP and QAP, presented in Chapter 7, does

include comparisons of the algorithm with and without local search. Extensions to this

work that include the impact of local search are outlined in the conclusions in Section 8.3.

2.8 Summary

Constructive heuristics iteratively build solutions from problem-specific solution compo-

nents. ACO is a constructive metaheuristic in which successive populations of artificial

ants build solutions, guided by a model of the solutions that may be produced called a

pheromone representation. Ants may also be guided by heuristic information. A number

of ACO algorithms have been developed based on the original ACO algorithm Ant Sys-

tem, each with features that improve the performance of the approach as an optimisation

technique.

ACO has been applied to a diverse range of problems, including subset, routing, schedul-

ing and numerous assignment type problems. The pheromone representations used in these

applications are equally diverse. As ACO has been applied to an increasing number of prob-

lems that differ from the original shortest path problem to which it was applied, a range

of ad hoc pheromone representations have been developed. Although a construction graph

is commonly considered an integral part of the definition of an ACO algorithm, many of

these ad hoc applications have either not used one or used a pheromone representation

that does not relate to the construction graph used.

Although many ACO algorithms for the same problem have used the same type of
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pheromone representation, the literature currently lacks a standard language for describing

pheromone representations. Furthermore, in those problems for which a range of phero-

mone representations have been used, it is clear that some pheromone representations result

in better performance than others. These two issues, a language for describing pheromone

representations and predicting which pheromone representation will produce the best re-

sults, are dealt with in subsequent chapters. However, before they can be discussed it is

necessary to examine the constructive process in more detail, as it is within this framework

that ACO algorithms operate. This is the subject of the next chapter.
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Chapter 3

Bias in Constructive Heuristics

As described in Section 2.1, the space in which constructive approaches operate can be

viewed in different ways. For a given problem, together with a constructive algorithm for

solving that problem, one may look at the sequence space that the constructive process

explores, which forms a tree, or alternatively at the graph of partial solutions. The con-

structive process itself may also be defined by means of a construction graph, as is common

practice in the application of ACO. However, while the constructive process must be clearly

defined for a given problem, the sequence and partial solution spaces are emergent features

of the constructive process and the problem to which it is applied.

Of particular interest in this chapter is the topology of the space of sequences, described

by the construction tree, and the mapping from sequences to solutions and the impact these

may have on the probability of individual solutions being found by an undirected construc-

tive algorithm. Deliberate sources of bias, such as heuristic and pheromone information,

are largely excluded from consideration in this chapter, although their potential impacts

are discussed in Section 3.6. The reaction of different pheromone representations to any

underlying bias is covered in Chapter 5.

Section 3.1 describes the underlying sources of bias that may exist in any constructive

algorithm while Sections 3.2 and 3.3 deal with specialised forms of these biases in problems

that may have infeasible solutions or in which the topology of the search tree can be altered

by the algorithm. Section 3.4 provides some examples of bias in constructive algorithms

for different COPs. Section 3.5 discusses the relative impact of these biases as problem

size grows. Section 3.6 describes some of the deliberately introduced biases in constructive

algorithms that are excluded from the analyses in this chapter, and suggests some of their

possible impacts.
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3.1 Bias Inherent in the Constructive Process

Throughout this chapter the term undirected is used to indicate that the constructive

algorithm in question makes each constructive decision probabilistically using a uniform

random distribution over the components available at each step. Such an algorithm is

hereafter referred to as ACOundir (i.e., undirected ACO). This is a necessary simplification

to study the biases that occur at the lowest level of any constructive optimisation algorithm.

Throughout the remainder of the thesis, the term solution bias is used to describe any bias

that favours one solution over another.

In constructive optimisation algorithms, there are two fundamental ways in which bias

may be introduced: the mapping from sequences to solutions and the existence of imbal-

ances in the topology of the construction tree. Collectively these will be referred to by the

term constructed solution biases.

Depending on the problem being solved and the nature of the solution components

used, the mapping from sequences of solution components to solutions may not only be

many-to-one, but also non-uniform. Consequently, some solutions may be overrepresented

in the construction tree. Consider ACOundir applied to the JSP, in which solutions are

represented as permutations of the operations to be scheduled. As solutions are uniquely

described in terms of the relative order of operations that require the same machine or

that are part of the same job, it is possible that the positions of some operations in the

permutation may be exchanged without changing the solution represented. Consider the

JSP depicted in Fig. 3.1, hereafter referred to as jsp2-2. There are three distinct solutions

to this problem, yet six feasible sequences. Of these, four correspond to solution s2, which

accordingly appears to have a 662
3
% probability of being discovered by ACOundir, twice that

expected if each distinct solution could be found with equal probability. This constitutes

a representation bias.

Definition 1 A constructive algorithm A applied to a given combinatorial optimisation

problem is said to have a representation bias if there exist two solutions s1 and s2, s1 6= s2

such that |S(s1)| 6= |S(s2)|. If the probability of producing each sequence representing s1

or s2 is the same, |S(s1)| > |S(s2)| → P (s1) > P (s2), where P (s) is the probability of

ACOundir producing solution s. 2

Figure 3.2 depicts the constructive paths corresponding to feasible solutions to the

jsp2-2 instance. Using ACOundir, the probability of choosing a particular component at a

given node in the tree is inversely proportional to the number of alternative components

at that node. Consequently, sequences found on paths with fewer alternatives at each

node are more likely to be discovered than those on paths with more alternatives. If there

are no infeasible sequences defined by A, then the degree of nodes within each level in
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Figure 3.1: A JSP instance described by Blum and Sampels (2002b) a) A small JSP
instance, jsp2-2, with O = {1, 2, 3, 4}, J = {J1 = {1, 2}, J2 = {3, 4}}, 1 ≺ 2, 3 ≺ 4,
M = {M1 = {1, 4}, M2 = {2, 3}}. i ≺ j indicates i must be processed before j. b) The
three solutions to this problem described in terms of the relative order of operations that
require the same machine. c) The six sequences that may be constructed and the solutions
to which they correspond.
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Figure 3.2: Construction tree for small JSP instance (see Figure 3.1 for problem descrip-
tion). Arcs are labelled with the probability of their being traversed if using ACOundir.
End points are labelled with the solution represented by that path. Aggregate solution
probabilities appear on the right.

the tree will be uniform. This is the case, for example, in the TSP and QAP, where

all permutations of cities or facilities represent feasible solutions. In problems where some

sequences correspond to infeasible (or impossible) solutions, the degree of branching within

each level will not be uniform, as in the JSP and GSP. In the example JSP, the probability

of each of the sequences corresponding to solutions s1 and s3 is twice that for any of the

four sequences corresponding to solution s2. This constitutes a construction bias.

Definition 2 A construction tree TA has a construction bias if there exist two nodes in TA
such that their heights in the tree are equal yet their degrees are not equal. A construction

bias favours sequences on paths in TA with fewer alternative branches than other paths in

TA. 2

When both biases are present, they will interact. Considering the jsp2-2 instance,

solution s2 has 662
3
% of all sequences. However, using ACOundir, P (s2) = 0.5. Hence, the

distribution of paths in the tree corresponding to a solution’s sequences determines the

actual likelihood of constructing the solutions represented.

Different problems and construction approaches exhibit different combinations of the
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two types of bias. The OSP is relatively unconstrained, with every permutation represent-

ing a feasible solution, so it exhibits only a representation bias. The more constrained GSP

and JSP, both of which have sequences that cannot be constructed, have both a represen-

tation and construction bias. An alternative construction approach for the JSP, GSP and

OSP which exhibits a different combination of bias is discussed in Section 3.4. In the TSP

and QAP all sequences (assuming solutions are represented as permutations of either cities

or facilities respectively) correspond to feasible solutions and each distinct solution has the

same number of representations, so they have neither bias.

The example problems considered so far all have solutions of a fixed length. In problems

where solutions are of variable length, or where feasible solutions cannot be guaranteed

(and infeasible solutions terminate construction), the construction bias becomes more com-

plicated.

3.2 Variable Length and Infeasible Solutions

For an unconstrained problem, the degree of branching at each decision point in the con-

struction tree is determined by the size of the domain of values that each decision variable

may take. The constrainedness of a problem under a constructive heuristic determines the

amount of imbalance in this degree at each level of the tree. The construction tree for an

unconstrained problem is generally perfectly balanced, with the same degree of branching

on all paths. Problems with constraints that make certain solution representations impos-

sible exhibit construction trees with imbalances; those paths on which decisions are made

that restrict later options consequently have less branching than other paths.

In problems where construction paths are of variable length, the imbalance is not only

evident in differences in the relative amount of branching on different paths, but also in

their respective lengths. For instance, solutions to subset problems typically have different

lengths depending on the components included in the solution and their respective impacts

on the problem’s constraints. For example, in the MKP a solution will generally be larger if

made up of items with small resource requirements, while items requiring greater amounts

of available resources will allow fewer other items in the solution. The early termination

of a path also curtails opportunities for branching on that path, so shorter paths have

an elevated probability of being reached. However, subset problems have a representation

bias that favours larger solutions, and so these problems have two opposing biases. A lower

bound on the probability of a sequence s being produced by an undirected constructive

search (denoted Pmin(s)), can be obtained by assuming the maximum amount of branching
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on the path leading to s and is given by

Pmin(s) =
(n− k)!

n!
(3.1)

where n is the number of available items in the subset problem and k is the number of

items in s. An upper bound on the probability of a sequence s being produced (denoted

Pmax(s)) may be obtained by assuming the minimum amount of branching on the path

leading to s, which occurs when the items in s can only be included in solutions with other

items in s. Consequently, all items are available in the first construction step, but only

those items that appear in s are available thereafter. The resultant upper bound is given

by

Pmax(s) =
1

n · (k − 1)!
(3.2)

Given that there are k! sequences corresponding to each solution of size k, lower and

upper bounds on the probability of a solution s are given by Equations 3.3 and 3.4 respec-

tively.1

Pmin(s) =
k!(n− k)!

n!
(3.3)

Pmax(s) =
k!

n · (k − 1)!
=

k

n
(3.4)

Figure 3.3 plots solution probability by size for the 15 item and 50 item MKP instances

from the mknap1 problem set available at the OR-Library (Beasley, 2005). Hereafter these

instances are referred to as mknap1-15item and mknap1-50item respectively. The plot

in Figure 3.3a shows results for all solutions to mknap1-15item, while that in Figure 3.3

shows the estimated probability given a sample of 300 randomly constructed sequences to

mknap1-50item.2 Lower and upper bounds are shown as dashed lines.

The lower bound on solution probability given by Equation 3.3 assumes the maximum

amount of branching leading to each solution. Consequently, the interaction between the

two sources of bias produces a minimum value for Pmin(s) when k = n
2
. However, the

existence of solutions with a range of sizes less than n (as a consequence of the existence

of items that restrict the range of available possibilities when added to a partial solution)

the amount of branching on each path to a solution will rarely be maximal. At the same

1Equation 3.4 may also be derived by considering just the initial construction step. Given a set of k < n
items that appear exclusively in a solution s, choosing any of those k (from n) items in the first step will
necessarily lead to solution s. Consequently s has the highest probability of any solution of size k and
P (s) = k

n .
2The probability of a solution P (s) to mknap1-15item was estimated as k! · P (s), where s is one

of the sequences representing s. This assumes each sequence’s probability is indicative of all other se-
quences representing the same solution. Analysis of all sequences corresponding to a sample of solutions
to mknap1-15item showed that in that problem the range of probabilities for sequences representing the
same solution was less than 0.1% of the range [Pmin(s), Pmax(s)].
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Figure 3.3: Solution probability by size for mknap1-15item and mknap1-50item instances.
Lower and upper bounds are shown as dashed lines.

time, the number of representations of each solution of size k remains k!. Consequently,

the representation bias in this problem tends to dominate.

Variable length solution paths are also found in highly constrained problems where in-

feasible solutions cannot be avoided (and are not permitted by the algorithm in question

and so necessarily halt solution construction). Such problems include the GAP and SPP.

Techniques to avoid such solutions include backtracking, where a constructive algorithm

may undo previous constructive steps, as well as allowing infeasible solutions to be com-

pleted before applying feasibility restoration heuristics, neither of which is the focus of

this study. Backtracking is discussed by, e.g., Shmygelska et al. (2002), while feasibility

restoration is discussed in relation to ACO by Randall (2002a) and Randall and Tonkes

(2001). Lourenço and Serra (2002) describe an ACO algorithm for the GAP that permits

infeasible solutions, but penalises them in proportion to the amount by which they violate

constraints. In algorithms that do not admit infeasible solutions and which do not back-
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track, such infeasible partial solutions have an elevated probability of being discovered.

Furthermore, the more constrained a problem, the shorter will be the paths that lead to

infeasible solutions, and so the relative increase in their respective probabilities will be even

greater. This issue is discussed in more detail with regards to the GAP in Section 3.3.1

below.

Highly constrained problems are therefore very difficult for constructive heuristics to

solve as not only are the majority of solutions in the solution space infeasible (e.g., this is

the case in the GAP), but these infeasible solutions have a disproportionately high proba-

bility of being constructed. A number of such highly constrained problems are assignment

problems, where the assignment order may alter the topology of the construction tree and

hence the probability of producing infeasible solutions.

3.3 Assignment Problems and Assignment Order

In assignment type problems there exists a choice over the order in which items are as-

signed. While the construction tree is completely defined by the constructive process used

to solve the TSP, MKP and GSP, changing the assignment order in an assignment prob-

lem rearranges paths in the tree. Different assignment orders do not alter the solutions

represented as assignment problems typically have no representation bias. However, they

will change which solutions are nearby in the construction tree and can introduce a bias

in some problems. Figure 3.4 shows six alternative construction trees for a trivial GAP

instance (2 agents, 3 tasks), each generated using a different, fixed assignment order. As

Figure 3.4 illustrates, solutions that are found on nearby branches of the construction tree

under one assignment order may be quite distant under another. For example, consider

solutions s2 and s3, which share all but the last part of their paths in the construction

tree in part (a), but whose paths diverge at the first decision in part (f). In effect, the

assignment order determines the constructive neighbourhood in which solutions are found.

Consider a constructive heuristic for the QAP in which solutions are constructed by

successively choosing an unassigned facility and then choosing a location to assign it. Given

there is no representation bias nor are there any infeasible paths in the construction tree,

rearranging solutions’ paths in the tree by altering the assignment order does not alter so-

lutions’ respective probabilities. However, it does change which solutions are “neighbours”

and hence may produce different results to another assignment order.

In contrast to the QAP, the GAP does have infeasible representations. Indeed, in many

such problems there exist infeasible solutions that cannot be avoided a priori, a topic

which is discussed in the next section. Considering those problem instances in which every

partial solution can be completed, yet where there still exist infeasible solutions which
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Figure 3.4: Construction trees induced by different assignment orders for small GAP in-
stance with agents {1, 2} and tasks {A, B, C} in which the combined resource requirements
of tasks B and C mean they cannot both be assigned to agent 1. Assignment orders are:
(a) A–B–C; (b) B–C–A; (c) B–A–C; (d) A–C–B (e) C–A–B; and (f) C–B–A. The relative
order of tasks B and C, which are competing for agent 1, determines which solutions are
more likely; solutions s1 and s4 under assignment orders (a)–(c), solutions s2 and s5 under
assignment orders (d)–(f). Solutions that are more likely appear in bold.
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must be avoided, it follows that those solutions that lie near the bounds of feasible space

will generally be favoured by ACOundir given they will be found on paths with relatively

little branching. If decisions that push these solutions towards infeasibility are relatively

near the initial empty solution, those solutions are more likely to be found. However, by

altering the assignment order, such decisions may be moved to any level (i.e., constructive

step) in the construction tree, thereby altering the degree of branching between the empty

solution and the solutions affected by those decisions. Consequently, different assignment

orders can alter the probabilities of different solutions being found by an undirected search.

Consider Figure 3.4, which depicts the construction trees induced by the six possible

fixed orders of the three tasks involved. In this GAP instance, the combined resource

requirements of tasks B and C exceed agent 1’s capacity, so they cannot both be assigned

to that agent, although all other combinations of assignments are feasible. Consequently,

any path that assigns either B or C to agent 1 has a reduced number of options along

its length, so solutions s1, s2, s4 and s5, each of which assigns either B or C to agent 1,

can be found on paths with little branching under at least one of the assignment orders.

Assignment orders (a)–(c) all have task B being assigned before task C, with the result

that solutions s1 and s4 (both of which assign task B to agent 1) appear on paths with

less branching and so are more likely to be found by an undirected constructive search.

Assignment orders (d)–(f) reverse this relative ordering, so solutions s2 and s5 are more

likely. In non-trivial instances, the interactions between the relative order of tasks that

have conflicting requirements are far more complex, although the assignment order can

still play a critical role in determining which solutions have a high probability.

Assignment orders may broadly be characterised by whether they are static (determined

a priori) or dynamic (changed during solution construction) and whether they are randomly

or heuristically determined. Which assignment order is “best” depends on both the type

of assignment problem being solved and what the algorithm developer would like it to

achieve. In problems with no infeasible solutions, such as the QAP, an assignment order is

often chosen with the aim of improving solution quality. For instance, one ACO algorithm

for the QAP uses a predetermined order in which facilities with high flow requirements are

assigned early. Coupled with heuristic information that favours placing facilities in central

locations (those with relatively short distances to all other locations) facilities that are

likely to contribute to solution cost the most have an increased chance of being assigned

to a central location which reduces their impact on cost (Maniezzo and Colorni, 1999). A

number of other ACO algorithms select successive facilities randomly (Stützle and Hoos,

1998; Taillard and Gambardella, 1997). A dynamic, randomised assignment order is in

effect a superposition of the construction trees produced by all other assignment orders.

While this approach is not guaranteed to increase the likelihood of good solutions being
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produced, it gives access to the construction trees for any other assignment order, and so

over time allows the algorithm to explore a range of good and bad construction trees.

Of particular interest in this study is how assignment orders may be chosen for highly

constrained assignment problems to either maximise the likelihood of reaching a feasible

solution or at least reduce the infeasibility of solutions produced.

3.3.1 Using Assignment Order to Reduce Infeasible Space

Unavoidable infeasible solutions are a common feature of many assignment problems, where

a number of items vie for limited resources. Devising an appropriate assignment order is

thus an important part of solving these problems.

Using an arbitrary fixed order fixes the topology of the construction tree and solu-

tions’ probabilities. Choosing a random order implicitly assumes that the topology of the

construction tree is unknowable,3 and gives each possible construction tree topology an

equal probability of being used. Intuitively, such an approach appears to give each item

an equal chance of obtaining its most sought after resource. In the development of an

ACO algorithm for the static aircraft landing problem, Randall (2002b) found that a dy-

namic random assignment order (of planes to landing timeslots) was more effective than

an arbitrary fixed order. While randomised assignment orders will likely produce better

results than an arbitrary fixed order, especially in an algorithm such as ACO which con-

structs a large number of solutions, they cannot guarantee a good outcome. An empirical

investigation of assignment orders for the GAP (discussed in detail below) reveals that

the majority of static, randomised assignment orders do not give a good probability of

reaching feasible solutions in comparison with what is possible given problem constraints.

Figure 3.5 shows the distribution of feasible solution probabilities achieved by a sample of

1000 random static orders for the five instances in the gap2 problem set (available at the

OR-Library (Beasley, 2005)).

Many ACO algorithms for assignment problems employ heuristics to determine a good

assignment order. A commonly used heuristic is to sort items by non-increasing order of

constrainedness (e.g., resource requirement in the GAP, number of shared constraints for

a variable in the CSatP). This is often coupled with the use of heuristic information that

biases ants towards assignments likely to not induce a constraint violation (e.g., Randall,

2004; Solnon, 2002). The rationale for this assignment order is that if such items are left

unassigned until late in the construction process then there may not be sufficient resources

to assign them. This heuristic would appear intuitively to produce a topology in which

branching on paths that lead to infeasible solutions is maximised, as those items that are

3For non-trivial instances the topology of the construction tree is unknowable as it can only be revealed
by complete enumeration of all solution sequences, which is an intractable problem for most COPs.
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Figure 3.5: Distribution of feasible solution probabilities across 1000 assignment orders for
gap2 instances. Each distribution is divided into 20 regions to obtain points for the plot.

the most difficult to assign are assigned early, while the number of suitable resources for

remaining items will still be high. An examination of different assignment orders for the

GAP below shows that this assignment order produces construction trees with shorter paths

leading to infeasible solutions, which consequently have an elevated probability relative

to the proportion of paths they represent. However, the total number of paths leading

to infeasible solutions is reduced, as decisions that lead to infeasibility are consolidated

nearer the root of the construction tree. Although a small number of infeasible paths does

not guarantee a high probability of reaching a feasible solution, trees with fewer infeasible

paths typically have a higher probability of reaching a feasible solution than those with

more infeasible paths. This is illustrated in Figure 3.6, which plots the number of infeasible

paths against the probability of reaching a feasible solution for the same sample of 1000

static assignment orders described in Figure 3.5 applied to the first instance from the gap2

set. Assignment order heuristics for a number of problems are now considered.

The GCP is an interesting assignment optimisation problem in that it may be posed in

two alternative ways: either with the objective of minimising the number of colours required

to produce a feasible colouring (i.e., where no two adjacent nodes have the same colour), or

with the objective of minimising the number of colour conflicts (i.e., like-coloured adjacent

nodes) for a given number of colours. While the former problem does not have infeasible

solutions, the latter does. Costa and Hertz (1997) describe two alternative ACO algorithms

to solve the first formulation of the problem, each of which assigns nodes using a different

heuristically determined order. The first dynamically orders nodes in non-increasing order

of saturation (the number of colours already assigned to a node’s neighbours in the partial

solution). The second iterates through colour groups, rather than nodes. However, when
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Figure 3.6: Number of infeasible sequence plotted against the probability of producing a
feasible solution (denoted P (feasible)) for 1000 assignment orders for first instance from
the gap2 problem set.

selecting which node to add to a colour group nodes are ordered according to their degree.

Costa and Hertz also discuss the potential use of static assignment orders including ordering

nodes randomly or in non-increasing order of degree. Given the superior performance of

the dynamic orders, they are the ones they incorporate into the ACO algorithms. Although

the ACO algorithms developed by Costa and Hertz produce only feasible colourings, and

hence the assignment orders they use appear designed to improve solution quality, they

are also useful for solving the second formulation of the GCP in which a fixed number k of

colours must be used with the aim of minimising the number of colour conflicts. Taking the

first algorithm as an example, for a given number of colours k and a partial solution that

uses k colours, if the next node must be assigned a colour outside the k already used then

that step is equivalent to producing an infeasible partial solution if one were attempting

to produce a k-colouring of the graph. Thus, heuristics that assign nodes based on some

measure of how difficult they will be to colour will work for both formulations.

Constructive algorithms for constraint satisfaction problems often employ heuristics to

determine a good order in which to assign the variables (Solnon, 2002). The ordering

heuristics are distinguished by the way they measure the constrainedness of the variables.

For example, commonly used orders include most-constraining-first, which selects an unas-

signed variable that appears in the greatest number of constraints with other unassigned

variables, most-constrained-first, which selects an unassigned variable that appears in the

greatest number of constraints with assigned variables, smallest-domain, which selects an

unassigned variable whose domain is smallest once values that would lead to infeasibility

are removed, and random ordering, which is the only one of the four not concerned with
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assigning highly constrained variables early. Smallest-domain was used by Solnon’s (2002)

ACO algorithm for the CSatP.

ACO algorithms for the GAP also make use of ordering heuristics based on measures of

the constrainedness of the tasks to be assigned (Lourenço and Serra, 2002; Randall, 2004).

The properties of the construction trees induced by some of these kinds of orders are

investigated empirically below.

In highly constrained assignment problems, a good construction tree topology is likely

to be one in which the probability of discovering a feasible solution is maximised. Certainly,

many of the ordering heuristics employed by constructive algorithms are designed for this

purpose. However, finding an assignment order that produces such a tree is non-trivial. For

a GAP with n items, there exist n! alternative assignment orders and their corresponding

construction trees. Moreover, to accurately assess the probability of producing a feasible

solution, complete enumeration of each construction tree is required, which if practicable

would subsume the original task of finding good solutions to the original GAP. As the set

of all dynamic assignment orders is a superset of all static assignment orders, identifying a

dynamic assignment order that maximises the probability of producing feasible solutions

is even more difficult than identifying a static order with this property. Consequently,

heuristically determined assignment orders are the only practical alternative.

An investigation of the probability of reaching a feasible solution using different assign-

ment orders in the GAP is now described.

Case Study: Assignment Orders for the GAP

The preceding sections presented three main hypotheses regarding the number and proba-

bility of producing infeasible solutions under different assignment orders. Chiefly, these are

that infeasible (and hence, relatively short) sequences have an elevated probability of be-

ing discovered, that assigning highly constrained items (tasks in the GAP) early produces

shorter paths leading to infeasible solutions, and that assigning highly constrained items

early should decrease the total number of such paths. This section presents an empirical

investigation of these hypotheses and of the effectiveness (in terms of the probability of

reaching a feasible solution) of a number of assignment orders when solving the GAP.

Initial analysis was made of the construction trees for every static assignment order

for a trivial instance with 3 agents and 8 tasks (adapted from the first instance, with

5 agents and 15 tasks, in the gap1 problem set).4 With more than 99% of assignment

orders, the probability of producing infeasible solutions was elevated above what would be

expected given the total number of infeasible paths in the construction tree, in some cases

4Details of the 3 agent, 8 task instance are available in Appendix C, while the gap1 problem set is
available from the OR-Library (Beasley, 2005).
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by more than 35%. The probability of reaching a feasible solution when the number of

paths leading to infeasible solutions is minimal was found to be better than the probability

under the worst assignment order (13% versus 3%). However, the highest probability (34%)

was shown under another assignment order in which the number of such paths was low,

but not minimal. Under this assignment order, the probability of producing infeasible

solutions was below what would be expected given their number. Furthermore, the best

assignment order did not have tasks in non-increasing order of constrainedness, which had

a 16% probability of producing feasible solutions. However, as heuristic assignment orders

that assign tasks in non-increasing order of constrainedness (or some variant thereof) are

commonly used, they are the subject of the remainder of this investigation.

When ordering tasks based on their degree of constrainedness, a suitable measure must

be used. Randall (2004) uses a dynamic measure of constrainedness based on the difference

between each task’s requirements and the current remaining capacity of each agent. The

constrainedness t(i) of a task i is given by

t(i) =

|Cres|∑
j=1

(currj + aij)− bj (3.5)

where currj is the current amount of agent j’s capacity in use, aij is the amount of agent

j’s capacity required by task i, and bj is agent j’s total capacity. The next task i to

assign is selected from those unassigned tasks such that t(i) is maximal. An alternative

constrainedness measure was used in this investigation, based on the proportion of each

agent’s capacity a task would require, given by

t(i) =

|Cres|∑
j=1

aij/ max{currj, nocap} (3.6)

where nocap = 0.1 is used to avoid division by zero (capacities are integral values) and

favour tasks that have a restricted choice of available agents. Although both measures are

similar, empirical investigation reveals they produce differing results.

Regardless of the measure used, assigning tasks in non-increasing order of constrained-

ness would be expected to lead to infeasible solutions being found earlier in solution con-

struction than would otherwise be the case, but also to reduce the number of these infeasible

solutions. Figure 3.7 compares ordering items by non-increasing and non-decreasing order

of constrainedness with respect to the number of infeasible solutions and the distribution

of their lengths for the first instance in the gap2 instance. Only solutions of length 20 are

feasible.

Sampling of the construction trees produced by 3000 randomly generated static assign-
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ment orders for instances from the gap1 (5 agents, 15 tasks) and 1000 for instances from

the gap2 (5 agents, 20 tasks) problem sets (Beasley, 2005) reveals that very few static

assignment orders can produce a relatively high probability of finding feasible solutions.

Figure 3.5 shows the distribution of feasible solution probabilities achieved by this sample

for the five instances in the gap2 problem set. Comparison with the construction tree

produced by a static assignment order in which tasks appear in non-increasing order of

constrainedness indicates that it can produce a higher probability of finding feasible solu-

tions than 90% of alternative static orders for gap1 instances (although on one instance it

was better than only 24% of sampled orders) and 80% of some gap2 instances.

A number of other assignment order heuristics (referred to simply as assignment orders

hereafter) were examined with regards to the probability of reaching a feasible solution

they gave on the gap1 and gap2 instances. A brief description of each appears below.

Static, fixed order (SFO). Tasks are assigned in the same order they appear in the

problem instance description.

Static, most constrained first (SMC). Tasks are sorted by non-increasing order of

constrainedness. All solutions are constructed using this order.

Static, least constrained first (SLC). Tasks are sorted by non-decreasing order of con-

strainedness. All solutions are constructed using this order.

Dynamic, most constrained first (DMC). Currently most constrained task is next to

be assigned.

Dynamic candidate set (DCS). A candidate set is formed from the most constrained

task for each agent, i.e., each agent provides one task for the set. The next task to

be assigned is chosen with a uniform random probability over the candidate set.

Dynamic, probabilistic (static measure) (DPS). The next task to be assigned is se-

lected probabilistically in proportion to an a priori measure of its constrainedness.

Dynamic, probabilistic (dynamic measure) (DPD). The next task is selected prob-

abilisitcally in proportion to its current level of constrainedness.

Tables 3.1 and 3.2 show the performance of each assignment order when used with the

10 instances from the gap1 and gap2 problem sets (each contains five instances). The

tables report the number of infeasible paths in the construction trees (denoted by in-

feas.), the probability of producing a feasible solution using an undirected search (denoted

by P (feas.)), and the proportion of static assignment orders this probability is greater
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than (denoted by %ile). Results for the gap1 instances were produced by complete enu-

meration of the construction trees for each assignment order–instance combination. Non-

deterministic dynamic assignment orders (i.e., DCS, DPS and DPD) were run across 10

random seeds, with the mean probability of producing a feasible solution taken. The

number of infeasible solution paths for the gap2 instances were produced by complete

enumeration of the construction trees, while the results for P (feas.) were produced by

examining 30000 solutions produced by ACOundir.
5

Both constrainedness measures described by Equations 3.5 and 3.6 were investigated

with the SMC, SLC, DMC and DCS assignment orders, with each assignment order anno-

tated by ‘a’ when using the absolute measure of constrainedness defined by Equation 3.5

and ‘p’ when using the proportional measure of constrainedness defined by Equation 3.6.

DPS and DPD were tested with the proportional measure of constrainedness only. Results

for DCSa and DCSp were equivalent on the instances studied and so only one set of data

is given. Although not statistically significantly different, SMCa and SMCp produce some

differing results and so are both reported.

Given the variability in P (feasible) results across instances, the results of pairs of as-

signment orders were compared using their percentile ranks (i.e, the percentage of random

static assignment orders they outperform). Due to the small sample (five instances from

each problem set) the Mann-Whitney test was used to determine if the observed differences

were statistically significant. Tables 3.3 and 3.4 show the results of the comparisons for

the gap1 and gap2 problem sets respectively. The tables are read as follows. To compare

assignment orders A and B, locate A in the left column and then locate the relationship

indicator, such as <, in the column under B, which gives A < B. Such an entry means

that A gives a lower probability of producing feasible solutions than B. If the result is

statistically significant then the significance level is shown below the relationship indicator.

If the probability that the observed difference is due to chance is above 85%, the = symbol

is used instead of < or >.

In general, all heuristic assignment orders examined, with the exception of DCS, achieve

a relatively high probability of reaching a feasible solution given what problem constraints

allow. The chief exception is the third gap1 instance, in which only three assignment

orders were above the 50th percentile. Nevertheless, the results suggest that relatively

simple assignment orders can be effective, at least on small GAP instances.

The results may be used to produce a coarse ranking of the approaches. In the following

A ≺ B is used to indicate that there is strong statistical evidence that B outperforms

A, A � B indicates that B generally outperforms A, but the result is not statistically

5As the probability of any one sequence is extremely small in these instances, the software used for
complete enumeration of construction trees was unable to accurately record the aggregate probability of
solutions. Consequently, an actual implementation of ACOundir was used to estimate these probabilities.
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Table 3.1: Feasible probability achieved by different assignment orders for gap1 GAP
instances. Bold entries denote the best result found for that instance.

Assignment order
Instance SFO SMCp SMCa SLC DMCp DMCa DCS DPS DPD

infeas. (×103) 873.3 109.1 109.1 2437.7 272.9 107 210.5 138.3 255.7
1 P (feas.) (%) 0.27 1.40 1.39 0.25 1.09 1.45 1.04 1.53 1.28

%ile 7.9 89.3 89 5.8 75.4 91 71.8 93.3 85
infeas. (×103) 583.2 56.6 60.5 681.1 118.8 60.5 150.7 73.4 135.1

2 P (feas.) (%) 0.01 0.45 0.41 0.03 0.26 0.41 0.08 0.42 0.26
%ile 2 99.4 99.1 16.5 96.3 99.1 66.5 99.1 96.3
infeas. (×103) 476.2 169.2 146 1360.2 297 146 255.6 185.4 293.7

3 P (feas.) (%) 1.5 1 1.6 0.9 1.2 1.6 1.2 1.5 1.4
%ile 52.2 24.5 56.8 20.3 36.2 56.8 34 51.5 45.9
infeas. (×103) 489.8 48 48 1319.3 127.4 48.1 87.3 59.5 122.3

4 P (feas.) (%) 0.29 4.40 4.40 0.10 3.13 4.32 2.61 3.83 3.03
%ile 18 99.8 99.8 0.4 99.1 99.8 98.3 99.6 99
infeas. (×103) 906 100.2 110.5 1688.5 280.4 104.2 316.9 138.3 298.7

5 P (feas.) (%) 0.91 10.67 10.30 0.47 6.77 11.11 3.03 8.04 5.65
%ile 25.5 100 100 10.5 99.4 100 80.5 99.8 98.4

Table 3.2: Feasible probability achieved by different assignment orders for gap2 GAP
instances. Bold entries denote the best result found for that instance.

Assignment order
Instance SFO SMCp SMCa SLC DMCp DMCa DCS DPS DPD

infeas. (×106) 437.4 65.7 64.4 1951.7 136.2 65.8 104 76.9 144.3
1 P (feas.) (%) 0.50 1.22 1.30 0.13 0.86 1.08 0.88 1.37 0.96

%ile 48.2 90.9 92.9 2.5 80.7 88.4 81.5 93.7 85.2
infeas. (×106) 488 89.8 87.8 1819.4 195.3 89 195.3 108 205.2

2 P (feas.) (%) 0.71 1.21 1.20 0.21 0.81 1.17 0.67 1.17 0.82
%ile 58.6 89.2 89.2 3.7 67 88.1 55.4 88 69
infeas. (×106) 536.5 274.7 314.9 2016.6 596.2 260.1 556.7 331.7 604.9

3 P (feas.) (%) 1.61 2.98 2.98 2.40 2.16 3.40 1.49 3.24 2.52
%ile 13.6 67.4 67.6 45.1 35.8 79.8 9.2 75.2 50.4
infeas. (×106) 807.7 112.5 112.5 1885.9 297.4 114.5 317.7 150.6 305.2

4 P (feas.) (%) 1.22 3.38 3.27 0.61 2.27 3.33 1.23 2.97 2.39
%ile 38 94 93.3 7 78.1 93.6 38 90.3 80
infeas. (×106) 386.8 191.4 194.9 2436.9 474.5 195.4 374 238.6 478

5 P (feas.) (%) 4.92 4.26 4.04 1.73 3.02 3.99 2.86 4.15 3.32
%ile 90.5 82.9 78.8 11.1 50.7 78 44.6 81.6 59.5
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significant, and A = B indicates that A and B perform equivalently. Based solely on

results for the gap1 instances,

SLC � SFO ≺ DCS � DPD � DMCp � DPS � SMCp = SMCa � DMCa,

while based solely on results for the gap2 instances,

SLC ≺ DCS � SFO � DMCp � DPD ≺ DMCa � SMCa � DPS � SMCp.

If results for the two instances are considered together,

SLC ≺ SFO ≺ DCS � DMCp � DPD � SMCp = SMCa = DMCa = DPS.

Considering the results for both problem sets, heuristically determining a static assignment

order appears to be as effective as more complicated dynamic heuristics such as DPS and

DMC, at least on small GAP instances. Given that dynamic assignment orders require

greater computational resources, static assignment orders may offer advantages over dy-

namic heuristics. Chapter 7 reports on the performance of ACO using a range of assignment

orders on larger GAP instances.

3.4 Examples of Bias in Constructive Algorithms

This section describes some common COPs to which constructive approaches such as ACO

have been applied and considers what biases they possess. Details of the standard approach

to applying ACO to those problems not discussed previously, and descriptions of the biases

they exhibit as a consequence, are as follows:

MCP Solutions to this problem may be built by successively including nodes in the clique

under construction (e.g., Fenet and Solnon, 2003). As nodes may be added in any

order and solutions may be different lengths, this problem has a representation bias.

In terms of construction bias, shorter sequences will have a higher probability of being

produced than longer ones, while the branching on some paths will be non-uniform

given the existence of infeasible combinations of nodes.

GCP This problem may be posed in two ways, with the objective of minimising either the

total number of colours used or the number of colour conflicts for a given number of

colours. In the former, all solutions generated are feasible, while in the latter, tech-

nically infeasible solutions do not halt solution construction (i.e., they are feasible in

terms of what the algorithm may produce). Consequently, they are both free from

a construction bias due to infeasible or variable length solutions. However, as alter-

native representations of each solution may be obtained by cycling the colours used
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Table 3.3: Pairwise comparison of assignment orders for gap1 GAP instances. Direction
of difference between percentile ranks of pairs of assignment orders are shown. If the
difference is statistically significant (based on a Mann-Whitney test) then the significance
level is shown below the direction indicator.

SMCp SMCa SLC DMCp DMCa DCS DPS DPD
SFO < < > < < < < <

(α =5%) (α =1%) (α =1%) (α =1%) (α =1%) (α =1%) (α =1%)
SMCp = > > < > > >

(α =1%)
SMCa > > < > > >

(α =1%) (α =10%)
SLC < < < < <

(α =1%) (α =1%) (α =1%) (α =1%) (α =1%)
DMCp < > < >

DMCa > > >
(α =10%)

DCS < <
(α =10%)

DPS >

Table 3.4: Pairwise comparison of assignment orders for gap2 GAP instances. Direction
of difference between percentile ranks of pairs of assignment orders are shown. If the
difference is statistically significant (based on a Mann-Whitney test) then the significance
level is shown below the direction indicator.

SMCp SMCa SLC DMCp DMCa DCS DPS DPD
SFO < < > < < < < <

(α =5%) (α =5%) (α =5%) (α =5%) (α =5%)
SMCp = > > > > > >

(α =1%) (α =5%) (α =1%) (α =5%)
SMCa > > > > > >

(α =1%) (α =5%) (α =5%) (α =10%)
SLC < < < < <

(α =1%) (α =1%) (α =5%) (α =1%) (α =1%)
DMCp < > < <

(α =5%) (α =5%)
DMCa > > >

(α =5%) (α =5%)
DCS < <

(α =1%) (α =10%)
DPS >
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between different groups of like-coloured nodes, if a solution requires more colours

then it will also have more representations. Consequently, the first formulation of

the problem has a representation bias, while the second does not. In both cases the

order in which nodes are assigned colours will determine how soon a partial solution

either becomes infeasible or requires a new colour to be used.

SCP This problem consists of selecting a subset of items, each of which is said to cover

certain constraints, such that all constraints are covered (Fiorenzo Catalamo and

Malucelli, 2001). As the order in which items are selected is unimportant, and varying

numbers of items are required to produce a feasible solution, this problem has both a

representation bias and a construction bias due to variable length solutions. As the

algorithm stops as soon as a cover is generated, certain combinations of items can

never be produced and can be considered infeasible, which also contributes to the

construction bias.

SPP This problem consists of selecting a subset of items, each of which is said to cover

certain constraints, such that the items selected partition the constraints (Maniezzo

and Milandri, 2002). It is subject to the same causes of bias as the SCP, with the

added construction bias that many shorter paths correspond to unavoidable infeasible

solutions.

Table 3.5 summarises the sources of bias in constructive algorithms for the problems

described in this chapter. Alternative constructive algorithms for the GSP and assignment

problems are presented below to illustrate how changing the algorithm can affect the biases

exhibited.

3.4.1 Solving the JSP, GSP or OSP as Assignment Problems

Scheduling problems such as the JSP, GSP and OSP may be transformed into assignment

problems either by directly assigning processing times to the operations, or by assigning

directions to the undirected arcs in their disjunctive graph representation. The latter is

discussed here. Taking this approach, C = Cit × Cres where Cit = {(i, j) ∈ O ×O |G(i) =

G(j)∨M(i) = M(j)}, O is the set of operations to be scheduled, G(i) is the group i belongs

to, M(i) is the machine on which i must be processed, and Cres = {true, false} where the

assignment ((i, j), true) means that operation i is to be scheduled before operation j, while

((i, j), false) indicates the reverse.

Constructing solutions in this way, each solution has only one representation, thus elim-

inating the representation bias present when solutions are constructed as permutations of

the operations. However, there is still a construction bias as some combinations of rel-

ative orderings create contradictions which cannot therefore represent feasible solutions
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Table 3.5: Examples of bias in constructive algorithms for different COPs. Where an
asterisk (*) appears, the variable length solutions for those problems are caused at least in
part by unavoidable infeasible solutions.

Construction bias influences
Representation Infeasible Variable length Assignment

Problem bias solutions solutions order changeable
TSP — — — n/a
MKP X X X n/a
MCP X X X n/a
QAP — — — Xa

JSP, GSP X X — n/a
OSP X — — n/a
GAP — X X* X
GCPb X — — X
GCPc — — — X
SCP X X X n/a
SPP X X X* n/a
aAlters solutions’ positions in construction tree, but does not create a bias
bWhen aim is to minimise number of colours used
cWhen aim is to minimise number of colour conflicts

(although there are no infeasible partial solutions). This is true when applying this ap-

proach to the JSP, GSP and OSP. As the problem is formulated as an assignment problem,

different assignment orders may be used. Figure 3.8 shows the construction tree result-

ing from the application of this approach to the jsp2-2 instance described earlier using a

randomised assignment order.

Although this alternative construction approach to these problems appears to be less

biased than the list scheduler algorithm typically used, it has the disadvantage that can-

didate directions must be eliminated if they would create a cycle, which is more time

consuming than maintaining the list of available operations in the list scheduler algorithm.

3.4.2 Solving Assignment Problems with No Assignment Order

Most ACO algorithms for assignment problems separate the choice of which item to assign

next from the choice of which resource to assign. That is, at each step, they select an

item either heuristically or randomly, and then choose a resource to assign to that item.

Roli et al.’s (2001) ACO algorithm for constraint satisfaction takes a different approach,

in which solution components are complete assignments. At each step, any individual

assignment of an item to a resource may be chosen. This same approach is used in a

GRASP for constraint satisfaction by Resende, Pitsoulis and Pardalos (1997).

Using this alternative construction approach, the problem of selecting an assignment
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Figure 3.8: Construction tree for jsp2-2 instance when solutions are produced by assigning
an order of precedence between pairs of related operations. i ≺ j means that the decision
has been made that operation i should precede related operation j in the solution. Arcs
are labelled with the probability of their being traversed if using ACOundir. End points
are labelled with the solution represented by that path. Aggregate solution probabilities
appear on the right.

order is subsumed by the problem of selecting a collection of assignments. The construction

tree induced by this approach is isomorphic with the construction tree produced by a

dynamic, randomised assignment order (if decisions regarding which item to assign at

each step are considered to be interleaved between decisions about actual assignments in

the tree). Consequently, it potentially gives access to any particular static or dynamic

assignment order. Therefore, observable biases will be similar to those seen using other

dynamic assignment orders in a typical construction algorithm for these problems. In

problems where assignment order can have a significant influence on performance, such as

in the GAP, it may become necessary to incorporate features of any assignment order into

the rule for selecting amongst competing assignments.

3.5 Bias Effects and Problem Size

As problem instance size grows it becomes impossible to perform a complete exploration of

the construction tree, and so the impact of construction and representation biases cannot

be analysed precisely. While these biases are still present, as the underlying mechanisms

do not change with problem size, any constructive search algorithm can at best produce a

sample of the many feasible solutions to such instances, making it difficult to observe their

effects on larger instances. Analysis of small instances shows that as problem size grows,

the relative difference in probability between individual sequences (and solutions) becomes

very large. However, given that the number of solutions grows exponentially with instance

size in COPs, even if a single solution’s probability is relatively high compared to another

solution’s, its probability is still extremely low overall. Table 3.6 shows the minimum
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Table 3.6: Bias effects and instance size.
Feasible Solution probability Ratio

Instance Size solutions min max (rounded)
MKP
mknap1-6item 6 items 8 0.0833 0.3333 4
mknap1-10item 10 items 19 0.0094 0.1564 17
mknap1-15item 15 items 708 0.0002 0.0376 175
GAP
gap1, instance 1a 15 tasks, 5 agents 55996 1.9× 10−9 9.3× 10−4 480001
gap1, instance 1b 15 tasks, 5 agents 55996 5.6× 10−10 1.3× 10−4 225000
gap2, instance 1a 20 tasks, 5 agents 75.1× 106 2.7× 10−14 6.9× 10−5 2.5× 109

gap2, instance 1b 20 tasks, 5 agents 75.1× 106 3.6× 10−14 1.6× 10−6 42.9× 106

GSP
jsp2 2 4 operations 3 0.25 0.5 2
jsp3 3c 9 operations 64 0.001 0.099 96
aUsing best assignment order.
bUsing worst assignment order.
cDetails of this instance given in Section 5.2.

and maximum solution probabilities for small MKP, GAP and JSP instances. Instances

from the mknap1 problem set are labelled in the same manner as the mknap1-15item and

mknap1-50item instances.

Although the effects of solution biases cannot be observed on larger instances due to

the large number of solutions, the mechanisms that introduce these biases, in particular

those that cause construction bias, also introduce a bias to any pheromone representation

used. This issue is discussed in Chapter 5.

3.6 Deliberately Introduced Sources of Bias

The analyses in this chapter have all assumed the use of a constructive algorithm (ACOundir)

which makes decisions using a uniform probability over the available components at each

step. This assumption was a necessary simplification in order to study the underlying

sources of biases that may affect constructive algorithms. These biases determine the

baseline probability of reaching particular sequences and hence, solutions. However, actual

constructive optimisation algorithms are not undirected and typically employ a range of

dynamic techniques to bias their searches towards good solutions. All of these deliberately

introduced sources of bias adjust sequences’ and solutions’ respective probabilities away

from the baselines established by the underlying biases in the constructive approach used

for a problem. A number of these techniques are discussed here.

The simplest deliberately introduced source of bias is the use of heuristic information to
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indicate which solution components appear good, at least in the short term. Certainly this

is an important component of most ACO implementations. Heuristic information may be

static (such as taking the inverse of the distance between the current city and a candidate

city in the TSP), or dynamic (as in some ACO applications for the VRP, e.g., Doerner

et al. (2002)). In a probabilistic constructive algorithm such as ACO, heuristic information

adjusts the relative probabilities of alternative choices at each node in the construction tree.

Without specialised insight, complete enumeration of the construction tree for a problem

is required in order to understand the combined effects of the use of heuristic information

and any underlying biases. An approximation of these effects may also be obtained by

comparing the solutions found by ACOundir and an ACOundir algorithm that uses heuristic

information to adjust the probability of selecting each solution component (denoted by

ACOheur).

A related source of deliberate bias comes from the use of candidate sets. Typically,

the set of candidate components is small and consists of those components that appear

good based on some heuristic measure. Thus candidate sets can be used to both increase

algorithm speed (by decreasing the number of solution components considered at each

step) and improve the quality of solutions produced by introducing a strong bias in favour

of heuristically good components. In essence, they are a more extreme form of the use

of heuristic information, in that the probability of a number of components is reduced to

zero. Static candidate sets (i.e., those based on static heuristic information) have been

used in a number of ACO algorithms for the TSP to enable their application to large

instances (e.g., Dorigo and Gambardella, 1997a; Stützle and Hoos, 1998). As with heuristic

information, analysis of either the full construction tree or the results of ACOundir and an

ACOundir or ACOheur algorithm that uses candidate sets is required to understand the bias

they introduce. ACO algorithms for the TSP and a car sequencing problem developed by

Randall and Montgomery (2002) make use of dynamic candidate sets, which regenerate

the candidate sets periodically using both pheromone and heuristic information. Such

candidate sets are part of a complex feedback system, which makes analysis of any bias

they introduce extremely difficult. However, ACO algorithms that have made use of either

static or dynamic candidate sets have achieved improvements in computation time and

solution quality.

Intensification and diversification techniques are useful additions to most metaheuris-

tics (Glover and Laguna, 1997). Intensification involves focusing a search on solutions that

contain particular features (typically those that appear to be part of good solutions), while

diversification forces the search away from features of solutions that have been seen before.

The two techniques would appear to be mutually exclusive, although this is not the case

as both can operate on different parts of a single solution, locking in some parts while forc-
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ing other parts to use previously unused features. Glover and Laguna state that the two

techniques should often be used at the same time. In ACO algorithms that use these tech-

niques, intensification and diversification typically occur at the level of individual solution

components, although other approaches have also been used. Intensification and diver-

sification techniques have been used in ACO algorithms by Blum (2002a), Gambardella,

Taillard and Dorigo (1999), Randall (2003a), Randall and Tonkes (2002) and T’kindt et al.

(2002). In terms of the possible effects of these techniques, intensification will generally

increase certain components’ probabilities, while diversification may either decrease certain

components’ probabilities or make all components’ probabilities more uniform, depending

on the exact technique used. This latter kind of diversification mechanism has been used

by Gambardella, Taillard and Dorigo (1999) and Stützle and Hoos (1998).

It is common practice in many constructive metaheuristics to apply a local search

procedure to the solutions produced by construction (Dorigo and Stützle, 2004; Feo and

Resende, 1995). The use of such procedures, which are typically very greedy, introduces

solution wells into which a number of solutions will fall. Accordingly, the probability of

reaching a solution s in a well is proportional to the collective probabilities of all those

solutions which the local search procedure transforms into s. Although such techniques

introduce a strong bias, evidence from the literature clearly indicates they help to pro-

duce very good solutions, and so may serve to counteract an otherwise unfavourable bias.

However, care must be taken in their design to ensure that they give adequate access to

different areas of the search space. A poorly designed local search procedure may make it

difficult to reach the optimal solution and may even, given a starting solution close to the

optimum, move the search further away from the optimum (Reeves, 1999).

A largely ACO specific trait is the use of an artificial pheromone to bias the search

towards those solution components that have appeared in good solutions in the past. This

feature is central to the ACO algorithm and as such is the subject of the remaining chapters

of this thesis.

3.7 Summary

Constructive metaheuristics explore a tree of constructive decisions as they build solutions.

The nature of the problem being solved and the constructive algorithm used can combine

to introduce a bias into the search. A representation bias occurs when solutions are rep-

resented by differing numbers of sequences in the construction tree, while a construction

bias is present when problem constraints lead to a restriction on the degree of branching

at some paths, thereby increasing the probability of sequences on those paths. Collectively

these biases are referred to as constructed solution biases.
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A construction bias can also be produced in problems where solutions are of variable

length, such as in subset problems, where short solutions have an increased probability of

being found. In highly constrained problems, such as the GAP, short solutions may exist

only as infeasible dead-ends in the construction tree. This can be problematic as these

infeasible solutions consequently have an elevated probability.

When building solutions to assignment problems such as the QAP and GAP, alter-

ing the order in which items are assigned alters the topology of the construction tree

and changes which solutions are near each other. In assignment problems with infeasible

solutions, selecting a good assignment order can reduce the probability of producing an in-

feasible solution. Relatively simple, commonly used heuristics for selecting an appropriate

assignment order for the GAP appear to work well with some problem instances, but are

occasionally worse than the majority of randomly chosen static assignment orders.

Although the analyses in this chapter assumed an undirected constructive algorithm,

actual metaheuristics are not undirected, and employ a range of techniques to deliberately

bias their searches. These deliberate biases may be either to guide the search towards so-

lutions (or parts of solutions) that appear promising or to diversify the search and possibly

escape from local optima. In a constructive setting, representation and construction biases

will set a baseline probability for each solution. Deliberately introduced biases do not re-

place these probabilities, but alter them. Further investigation is required to understand

how these deliberately introduced biases interact with underlying solution biases.

Nevertheless, understanding the nature of the biases that may exist in constructive

algorithms can assist in the development of improved ACO algorithms. Pheromone infor-

mation, the distinguishing feature of the ACO metaheuristic, is an important deliberately

introduced source of bias that interacts with these underlying constructed solution biases.

The nature of the interaction may make some pheromone representations more effective

than others, especially in those cases where there exists a consistent, predictable pattern

in the interaction. These issues are discussed in Chapter 5. However, before the com-

bined effects of bias and pheromone can be described it is necessary to study pheromone

representations in more detail, which is the topic of the next chapter.
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Chapter 4

Pheromone Representations

The use of an artificial pheromone to learn the value of solution components is the defining

feature of ACO; without it an ACO algorithm merely becomes a probabilistic greedy con-

structive heuristic. The pheromone representation used by a particular ACO algorithm is

a model of aspects of solutions to the problem being solved. ACO thus belongs to the class

of model-based search (MBS) algorithms (Zlochin and Dorigo, 2002). To date, no thor-

ough review of the range of pheromone representations used has been conducted and no

consistent language has appeared in the ACO literature to describe formally what different

pheromone representations model.

This chapter considers the different features of solutions that pheromone may be used

to model and how particular problems and constructive algorithms for those problems

restrict the set of suitable pheromone representations (or models). While some of the

different approaches to updating pheromone values are discussed, the main purpose of

the chapter is to describe how pheromone may be used to model solutions. Section 4.1

introduces a notation for describing pheromone representations in terms of the solution

components used to build solutions and discusses the two main approaches to deriving a

pheromone representation for a given problem and constructive algorithm. The notation

is tailored to suit the majority of pheromone representations that have been used in the

literature, but some atypical pheromone representations have been used for which it is not

well suited. These are discussed in Section 4.1.2. Section 4.2 discusses issues that are

peculiar to the use of higher order pheromone representations—models of combinations of

solution components.

4.1 Formalisation of Pheromone Representations

A pheromone representation is a model used to guide ants as they construct solutions, and

so maps certain identifiable features of solutions to pheromone values. Hence, the nature
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of a pheromone representation is determined by the features it models. Typically, these

features correspond to the decision variable–value pairs in the problem being solved. For a

given combinatorial optimisation problem often several alternative sets of decision variables

may be defined and consequently different pheromone representations are also possible. As

an extension to the definition of a solution component given in Chapter 2, it is useful to

introduce the concept of a solution characteristic, denoted by c, which is equivalent to the

binding of a value to one of the decision variables for a problem. Modelling a set of solution

characteristics implicitly defines a set of binary decision variables, as each solution may or

may not exhibit each particular solution characteristic.

An individual characteristic may correspond to the presence of a particular solution

component or to some broader feature of solutions produced by a number of solution

components or other entities in the problem. For instance, in the MKP, the solution

characteristics typically modelled represent the presence of a particular component (i.e.,

item) in the solution. An example of the second case is the pheromone representation used

for the TSP, in which solution characteristics correspond to pairs of successive components

(i.e., edges of the graph of connected cities). A set of solution characteristics may be

denoted by combinations of the entities to which the characteristics relate. These can

include the set of components C from which solutions are built or, in assignment problems,

the sets of items Cit or resources Cres (where in many cases sequences are constructed

from elements of one set only, but which implicitly represent assignments). It may also be

generalised to make use of any number of different types of entity C1, . . . ,Cn in a problem.

Some pheromone representations also model the absolute position of a component in a

sequence, the set of positions being denoted by P . Thus, the solution characteristics

modelled for the MKP may be denoted simply by C, while those for the TSP may be

denoted by C×C. The set of assignments (each of which is a solution characteristic) in an

assignment type problem such as the QAP may be denoted by Cit × Cres, where Cit is the

set of facilities and Cres the set of locations.

Denote an arbitrary, unspecified set of solution characteristics by C and a subset of

solution characteristics corresponding to a solution s as Cs ⊂ C. Strictly speaking, a

pheromone representation is a mapping from solution characteristics C to pheromone values

and so should be denoted by C 7→ T . Except in a small number of cases, which are clearly

identified, pheromone representations associate a single pheromone value to each solution

characteristic, and so C 7→ T can be abbreviated to C.

The notation is not intended to be—indeed, will rarely be—a precise mathematical def-

inition of the solution characteristics, and hence pheromone values, modelled by a phero-

mone representation in an actual application. However, it does not preclude such definitions

and may form an intermediate step in their specification. For instance, in the ATSP, a
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precise definition of the solution characteristics modelled is C = {(ci, cj) ∈ C×C | ci 6= cj}.
Hence, C ⊂ C × C, which is what the notation defines for this problem. Similarly,

the symmetric TSP has the same definition for C with the additional constraint that

τ(ci, cj) = τ(cj, ci). The notation introduced here thus provides for a typically short de-

scription of the set of solution characteristics modelled by a pheromone representation,

while additionally corresponding directly to computer implementations of such represen-

tations, which use arrays and matrices and hence include a number of unused pheromone

values.

Where the addition of a single solution component to a partial solution corresponds

with the addition of a single solution characteristic, the pheromone representation in ques-

tion is said to be first order (Blum, 2004; Blum and Sampels, 2002a). In such cases,

a single pheromone value from the representation is used to influence an ant’s decision

regarding a single solution component. Higher order representations involve subsets of

solution characteristics influencing each decision. For instance, a second order pheromone

representation may indicate the utility of having a pair of solution components in the same

solution. Thus, higher order pheromone representations implicitly define two sets of de-

cision variables for a problem: one set relates to decisions to include individual solution

components based on the current state of a partial solution, while the other set relates

to higher order decisions, i.e., whether a single solution should exhibit two or more solu-

tion characteristics at the same time. Such pheromone representations may emerge in two

ways. Given an existing first order pheromone C, the nth order pheromone representa-

tion may be obtained by transforming it into Cn, where the pheromone associated with

the n-tuple (ci, . . . , ck) ∈ Cn represents the learned utility of having all n characteristics

ci, . . . , ck in the same solution. For instance, in a subset problem where C = C, the nth

order pheromone Cn = Cn represents the utility of different combinations of n components

being part of the same solution. Alternatively, when the solution characteristics modelled

relate many parts of the solution to each other, a higher order pheromone forms naturally

as a consequence of having to combine information from each of those relationships. In

this case, it is often impossible to use the underlying first order representation indepen-

dently, unlike the former situation. In both cases, the resulting representation is denoted

by Sp×C; Cn, where Sp represents the set of all partial solution sequences. The first part

describes the observed pheromone representation, where the pheromone associated with

adding a solution characteristic from C is contingent on a partial solution from the set Sp.

The observed pheromone representation provides a single pheromone value for each candi-

date solution component and hence is equivalent to a first order representation. Therefore,

ants make decisions based on the values in this observed pheromone representation. The

second part describes the underlying pheromone representation Cn from which pheromone
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values are aggregated (various approaches are considered in Section 4.2) to produce the

observed pheromone representation. An example appears below.

The strict definition of the nth order pheromone representation generated from C in-

cludes only higher order solution characteristics (and hence pheromone values) for n-tuples

consisting of n distinct elements from C. However, the simpler notation Cn is used.1 The

structure of a typical nth order pheromone is described formally in Definition 3.

Definition 3 The nth order pheromone representation derived from the first order phero-

mone representation C is {(c1, . . . , cn) | c1, . . . , cn ∈ C, c1 ≺ . . . ≺ cn} ⊂ Cn where ci ∈ C is

a solution characteristic from C and ≺ is an arbitrary fixed order imposed on the elements

of C. This is denoted by Sp × C; Cn. 2

An example of a naturally occurring second order pheromone is that used for the GCP

(Costa and Hertz, 1997). Solutions are produced by the assignment of colours to nodes,

which suggests solution characteristics (and hence, decision variables) from Cit×Cres where

Cit is the set of nodes and Cres the set of colours. However, Costa and Hertz use a pheromone

representation of the form Sp × Cit × Cres; C
2
it, where Cit × Cit represents a pair of nodes

being assigned the same colour. Hence, the pheromone representation naturally relates a

number of solution components. Although Definition 3 cannot be applied directly to this

second order pheromone, the standard C–C2 relationship can still be seen by considering

a typical second order pheromone where solution characteristics are pairs of node–colour

assignments, Sp×Cit×Cres; (Cit×Cres)
2. That is, where solution characteristics correspond

to the solution components used to build solutions. Given that the actual colours assigned

to nodes do not affect the cost of solutions—only what nodes are in the same colour group—

all references to actual colours in the underlying (Cit×Cres)
2 pheromone may be removed,

producing the simpler Cit × Cit pheromone. This second order pheromone is referred to as

a grouping pheromone hereafter.

Table 4.1 shows the notation applied to a number of commonly used pheromone rep-

resentations. Where the solution characteristics described by C are potentially ambiguous

it may be necessary to specify their proper interpretation. The third and fourth represen-

tations in Table 4.1 are both described as Sp × C; C2, where (i, j) ∈ C × C may represent

i and j being copresent in a solution or that i appears before a related item j in the so-

lution. These can be specified more clearly by denoting the representations as Sp × C; C2

(copresent) and Sp × C; C2 (related succeeding) respectively.

1This corresponds to the use of matrices to implement such representations given their fast access
properties not possessed by sparse representations.
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Table 4.1: Common pheromone representations. Example problems represent a sample of
how representations have been used in the literature. In some cases different pheromones
have been used with the same problem.

Pheromone Pheromone associated with. . . Example problems
C items present in solution MKP, SCP
C× C one item succeeding another JSP, SMTTP, TSP
Sp × C;C2 (copresent) pairs of items present in solution MCP
Sp × C;C2 (related succeeding) one item preceding a collection of others JSP
Sp × Cit × Cres;C2

it pairs of items in same/different group GCP
C× P position of item in solution JSP, SMTTP
Cit × Cres assignment of resource in Cres to item in Cit GAP, QAP

4.1.1 Representation-Oriented and Identity-Oriented Pheromones

Two approaches may be taken to derive a pheromone representation from the problem

model used by ants to build solutions: representation-oriented and identity-oriented. The

former produces pheromones that reflect some aspect of how solutions are represented (i.e.,

the arrangement of solution components in a solution sequence), while the latter results

in pheromones that describe which solutions are represented. These are specified more

formally in Definitions 4 and 5.

Definition 4 A pheromone representation C is said to be representation-oriented if, for

each sequence s, there is a unique set of solution characteristics drawn from C that describes

only s. 2

Definition 5 A pheromone representation C is said to be identity-oriented if, for each

solution s, there is a unique set of solution characteristics drawn from C that describes s.2

The arrangement of solution components may identify solutions in some problems,

but in many cases only indirectly indicates the identity of the solutions represented. For

example, representing solutions to a subset problem as a linear list of items, a C × P

pheromone could be used to learn where to place items in the sequence. These solution

characteristics imply decision variables of the form xi representing the position of item i in

the solution. This indirectly indicates which items should be chosen. Using a C pheromone

for a subset problem represents the identity of solutions quite separately from how they are

represented and built by ants. The decision variables implied by this pheromone indicate

whether an item is in the solution or not.

The two kinds of pheromone are not mutually exclusive. When a given solution struc-

ture represents each solution only once, any pheromone used with or derived from that

structure will reflect both solution representation and identity. For instance, C× C phero-

mone for the TSP represents both how solutions are represented (i.e., as permutations)
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and the identity of solutions as sets of edges. A number of pheromone representations

described in the literature are derived from structural aspects of solutions (see, e.g., Bauer

et al., 1999; Colorni et al., 1994; Merkle et al., 2000; Stützle, 1998). For many problems,

these pheromones only indirectly identify solutions, an issue which is discussed in Chap-

ter 6.

4.1.2 Atypical Pheromone Representations

An assumption of the notation introduced in this chapter is that a solution is described

by a proper subset of the solution characteristics modelled by a pheromone. Accordingly,

the pheromone representation may support a number of constructive algorithms for the

problem in question in addition to those that build solutions as sequences of solution

components. For instance, solutions to the TSP may be built as collections of links while

still using a C × C pheromone, provided that solution components are taken from C × C.

The notation is thus suited to the majority of pheromone representations used in practice.

However, in some ACO algorithms the pheromone representation and constructive process

used are either inextricably connected or necessitate special use of pheromone information,

and in such situations the notation is less easily applied.

Shortest Common Supersequence Problem

The SCSP (Michel and Middendorf, 1999) requires an unusual constructive approach (in

comparison to many of the problems to which ACO has been applied). Although the

problem and an ACO algorithm for it were discussed in Section 2.4.6, the description is

repeated here given the comparative complexity of the approach used. The SCSP con-

sists of creating a minimum length string of characters from some alphabet Σ such that

it is a supersequence of a set L of other strings (i.e., any of the other strings may be

produced by deleting characters from the solution). An ACO algorithm for this problem

developed by Michel and Middendorf constructs solutions in the following way. Solutions

are constructed from the characters in Σ, so Σ ≡ C. Furthermore, unlike the majority

of ACO implementations, components in C may—generally must— appear multiple times

in a solution. Throughout the solution construction process, the algorithm keeps track of

how many characters from the start of each string in L have been included in the partial

supersequence. The front of each string in L is the next character that can be added to the

supersequence. At each step, the set of candidate characters consists of the next character

to include from each string. A pheromone value is associated with each character in each

string, suggesting a pheromone representation of L × I, where I is the set of indices of

characters within the strings of L. However, the decision to include a candidate character

c ∈ C, where C is the set of characters, is based on a single pheromone value derived by
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summing pheromone values for each (l, i) ∈ L × I, where i is the position of the next

available character from the string l, such that the ith character of l is c.

Given a supersequence produced by the algorithm, pheromone for the characters in

each string l ∈ L is updated by stepping through the construction process used to generate

that supersequence to determine which characters were covered at each step, with each

string’s characters receiving an increase in pheromone in proportion to how early they

were included in the supersequence. The pheromone representation is therefore most closely

denoted by Sp × C; L × I. This differs from more typical pheromone representations in

that individual pheromone values have no meaning outside of the constructive process used

as each will contribute to the inclusion of a character at some point in a single solution’s

construction. In more typical pheromone representations the pheromone value associated

with each solution characteristic may be considered without its corresponding solution

component being added to the solution.

Pheromone for the Direct Assignment of Times in Scheduling Problems

Many scheduling problems to which ACO has been applied construct solutions as sequences

of the operations to be scheduled, with a subordinate heuristic performing the final allo-

cation of operations to times in the schedule. This approach is highly intuitive for many

such problems as the subordinate heuristic can be extremely simple. For instance, in the

JSP and OSP, where the objective is to minimise the makespan of the schedule, scheduling

operations as early as the precedence relations established by a solution sequence allow

results in the best schedule for those precedence relations. Such problems may also be

solved as assignment type problems, where operations are assigned directly to times. An

example of such an approach is Randall’s (2002b) ACO algorithm for the static single

runway aircraft landing problem, introduced in Section 2.4.6. Unlike common assignment

problems such as the GAP and QAP, in which |Cit| ≥ |Cres|, representing this problem as

an assignment problem results in |Cit| � |Cres|. A further distinguishing characteristic is

that resources in this problem are ordinal, while resources in problems like the GAP and

QAP are not. Hence, differences between resources are more gradual than in the GAP and

QAP, and nearby times are similar in terms of solution cost. As each plane has its own

landing window, the set of times Ci
res available to each plane i is a subset of all available

times in the problem Ci
res ⊂ Cres. Planes’ respective sets of available times form a cover of

Cres.

Given that there may be little overlap between planes’ respective available times, a

typical Cit × Cres pheromone representation is likely to be highly wasteful of computing

resources, with many modelled assignments outside each plane’s time window. To deal with

this potential problem, Randall’s ACO algorithm divides each plane’s time window into a
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fixed number k of contiguous regions, with pheromone associated with the assignment of

a plane to a time in a given region. The observed pheromone is thus Cit × Cres, while the

underlying pheromone representation is Cit×C′res, where C′res is the set of regions. Individual

times within the same region are differentiated by the use of heuristic information. While

this is not a higher order pheromone, using the notation described in this chapter it is

most accurately denoted by Cit×Cres; Cit×C′res. Unlike higher order representations, such

a pheromone requires a function that maps from each plane’s available times to regions

in the pheromone representation, f : Cit × Cres → C′res. The mapping is such that if a

given plane’s time window contains the times {t1, t2, . . . , tn}, and the elements of C′res are

{1, 2, . . . , k}, then f(t ∈ {t1, . . . , tn
k
}) = 1, f(t ∈ {tn

k
+1, . . . , t 2n

k
}) = 2 and so on. While this

approach is primarily designed to deal with different planes having different time windows,

it may also be advantageous given the contiguous nature of resources in the problem, an

issue discussed in Section 6.2.4.

Pheromone to Learn Assignment Order in Assignment Problems

The general framework for applying ACO to assignment type problems described by Costa

and Hertz (1997) includes provision for two pheromone representations: one to learn what

assignments to make and another to learn what order in which to assign items. An example

of the former pheromone is the higher order pheromone used by Costa and Hertz in their

ACO algorithm for the GCP, which was used to illustrate the general approach.2 Given

that the order in which items are assigned in such problems does not alter the solution

represented, a pheromone representation that learns the order in which to assign items

does not directly influence which solutions are constructed. However, assignment order

clearly has an important impact on the ability of a constructive algorithm to produce

good solutions. In effect, such a pheromone can be used to solve a secondary optimisation

problem, namely that of the best assignment order to use. Hence the “solution” it helps to

produce is an assignment order, the cost of which is determined by the application of ACO

to an assignment problem using that order. In general terms, the pheromone could be

represented as (Sp×Cit; C), where C may be any applicable underlying pheromone, which

indicates that the assignment order depends on the current partial solution. In practice,

any of the pheromones used with permutation problems could be used: Cit × Cit, Cit × P ,

or Sp × Cit; Cit × Cit (preceding).

2Costa and Hertz (1997) did not use a pheromone to learn a good assignment order, instead using a
variety of problem specific heuristics.
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4.2 Using Higher Order Pheromone Representations

A number of issues arise when dealing with higher order pheromone representations.

Chiefly, these are how the higher order information is used, and the trade-off between

the computational overhead associated with the larger pheromone representation and the

benefits of using the extra information it provides. The former is discussed in this section,

while the latter is discussed in Section 4.2.2 below.

Although higher order pheromone representations have been used in a number of ACO

algorithms, there is no single approach to their use. Nevertheless, there are common

features of each of the approaches currently described in the literature that allow a general

framework to be proposed.

When using a first order pheromone, each constructive step is a competition between

individual solution characteristics (and hence between the solution components they im-

plicitly represent). When using a higher order pheromone, the pheromone associated with

adding a particular solution component is an aggregate of a number of pheromone values.

The notation introduced above partially defines the nature of the relationships between

solution characteristics in a higher order pheromone. However, the precise nature of the

relationships depends on the problem being solved and the constructive algorithm used.

Given a first order solution characteristic c, denote the set of all other single solution com-

ponents or characteristics to which c is related and which should be used to inform the

decision to include c in the current partial solution by Cc. In general, for an nth order

pheromone representation it is important to know to which tuples of (n− 1) solution com-

ponents or characteristics a first order characteristic c is related, which is denoted Cn−1
c .

Given an appropriate definition for Cn−1
c , a suitable aggregation function must also be de-

fined, as well as an alternative when Cn−1
c = ∅. Assuming that a solution characteristic c

corresponds to a single constructive step (e.g., the addition of a single solution component

or a single assignment), and denoting the pheromone associated with adding c to the par-

tial solution sp using an nth order pheromone by τ(sp, c, n), a generic function for τ(sp, c, n)

where n ≥ 2 is given by

τ(sp, c, n) =

{
f(sp, c, τn) if ∃ τn and |Cn−1

c | > 0

τ(sp, c, n− 1) otherwise
(4.1)

where τn : C × Cn−1 → T is a function from collections of n solution characteristics to

pheromone values, and f(s, c, τn) is an aggregation function over the pheromone values

associated between c and the elements of Cn−1
c , which is discussed in more detail below.

Note that the equation is recursive; if Cn−1
c is empty or τn does not exist then a lower order

pheromone representation is sought. To ensure that the recursion defined by Equation 4.1
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is well-founded, τ1 must be defined, either to be a constant value or a separate first order

pheromone. In pheromone representations where the elements of Cn−1
c are taken from sp,

early in solution construction sp contains few solution characteristics and it is likely that

Cn−1
c = ∅, and hence a lower order pheromone such as τ1 must be used until the nth order

pheromone τn can be used. Conceivably, for n > 1, if an nth order pheromone is used, n−1

other pheromone representations may also be employed to deal with the first n − 1 steps

of solution construction. In practice, most higher order pheromones are only second order,

so at most two pheromone representations may be required.

Instances of higher order pheromones are specified by providing definitions for the three

components of this general definition, Cc, f and τ1. The definition of Cc is highly problem

specific and closely tied to the way solutions are constructed. Some examples are given

below.

A number of options are available for the aggregation function f , four of which are to

take the minimum, maximum, mean or sum of the different pheromone values involved,

shown in Equations 4.2 through 4.5:

f(sp, c, τn) = arg min
c′∈Cn−1

c

τn(c, c′) (4.2)

f(sp, c, τn) = arg max
c′∈Cn−1

c

τn(c, c′) (4.3)

f(sp, c, τn) =

∑
c′∈Cn−1

c
τn(c, c′)

|Cn−1
c |

(4.4)

f(sp, c, τn) =
∑

c′∈Cn−1
c

τn(c, c′). (4.5)

These four alternative definitions of f are denoted by min(τn), max(τn), mean(τn) and

sum(τn) respectively.

The definition of Cn−1
c also determines which pheromone values from τn are updated by

a solution sequence s. For instance, using a second order pheromone that represents the

learned utility of having pairs of solution characteristics (ci, cj) ∈ C2 copresent in a solution,

pheromone is updated for all pairs (ci, cj) such that ci, cj ∈ s, ci 6= cj. Alternatively, given

a solution sequence s and a second order pheromone that represents the utility of placing a

solution component c before certain other solution components Cc ⊂ C, the value of Cc ⊂ C

when the solution was constructed must be used to identify which pheromone values to

update. Similar examples from the literature are given for both situations below.
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4.2.1 Examples

The following examples illustrate the use of higher order pheromones in the literature in

relation to Equation 4.1.

Blum (2002b) investigated a first and second order pheromone representation for the

KCTP, C and Sp × C; C2 (copresent) respectively, where C is the set of edges used to

construct a k-cardinality tree. Given that C ≡ C, this second order representation has

Cc = {c′ | c′ ∈ sp}, with f = sum(τn) and τ1, used to select the first edge, given by the

first order pheromone. Hence, when using the second order pheromone, both the first and

second order pheromones are used in solution construction and updated by the solutions

produced.

Fenet and Solnon (2003) describe an ACO algorithm for the MCP in which a Sp×C; C2

(copresent) pheromone is used, where C ≡ C is the set of nodes from which a clique must

be selected, with Cc = {c′ | c′ ∈ sp} and f = sum(τn). The first node is selected randomly,

which is equivalent to τ1 = 1, as heuristic information is not used.

Costa and Hertz (1997) use a grouping pheromone Sp × Cit × Cres; C
2
it in their ACO

algorithm for the GCP with Cc=(i,r) = {j ∈ Cit | (j, r) ∈ ssp , r ∈ Cres}, f = mean(τn) and

τ1 = τ0 = 1.3 A similar second order pheromone is used by Ducatelle and Levine (2001,

2004) in theirMMAS algorithm for the BPP and CStockP, with the exception that τ1 = 1

while τ0 = τmax = 20.

Socha et al. (2002) examined two alternative pheromones for a UCTP, one of which

is similar to the grouping pheromone used by Costa and Hertz (1997) and Ducatelle and

Levine (2001, 2004). However, rather than learn what events should be scheduled at

the same time (equivalent to learning what nodes should be placed in the same colour

group in the ACO algorithm for the GCP of Costa and Hertz) this pheromone is used

to learn which events should not be scheduled at the same time. Consequently, given

C = {(i, r) ∈ Cit × Cres} where Cit is the set of events and Cres the set of times, Cc=(i,r) =

{j ∈ Cit | i 6= j, (j, r′) 6∈ ssp , r′ ∈ Cres} (i.e., the set of unscheduled events), f = min(τn)

and τ1 = τmax.
4

ACO algorithms for CSatPs, in which a set of variables must be assigned values from

each variable’s domain, have used similar higher order pheromones. Roli et al. (2001)

describe the use of three alternative pheromones including a second order pheromone Sp×
C; C2 (copresent) where C is the set of variable–value assignments. Solnon’s (2002) ACO

algorithm for the CSatP uses an identical second order pheromone. In both applications,

3Note that τ0 represents the initial pheromone amount while throughout this section τn, n > 0, is used
to denote a function from collections of n solution characteristics to a pheromone value.

4τmax is used as Socha et al. (2002) use a MMAS. However, given that the value of τ1 is only used
when there are no unscheduled events remaining, any constant value could be used as the same pheromone
value will be used to assess every candidate timeslot.
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Cc = {c′ | c′ ∈ s} where C ≡ C and f = sum(τn). It is not clear in either work what value

is given to τ1 and hence, how pheromone influences the first assignment made.

Schoofs and Naudts (2000) also describe an ACO algorithm for constraint satisfaction

for binary CSatPs, in which each constraint involves exactly two variables. Pheromone is

associated between pairs of variables and the average pheromone level between a variable

i (about to be assigned) and those variables already assigned is used to determine what

value to assign to i. However, due to the way pheromone information is updated, it is

actually very similar to the approaches of Roli et al. (2001) and Solnon (2002), with the

pheromone values used to decide whether to assign a value yi to the variable i relating

to the utility of making that assignment in the preceding generation of ants (B. Naudts,

personal communication, 6 December, 2004). Hence, given the set of variables Cit and the

set of values that may be assigned Cres, the pheromone can be described by Cc=(i,r) = {j ∈
Cit | (j, r′) ∈ ssp , r′ ∈ Cres, (i, r) ∈ s′, s′ ∈ Sprev}, where ssp is the partial solution under

construction and Sprev is the set of solutions from the preceding iteration, f = mean(τn),

and τ1 = 1.

Blum and Sampels’s (2002a) pheromone for scheduling problems like the GSP, which

learns the relative order of related operations (i.e., those that either require the same

machine or are part of the same group), models the first order solution characteristic of

adding of a single operation c to a partial solution sp. However, for simplicity of notation,

Cc is denoted by Cc. In this higher order representation, Cc is the set of unscheduled

operations related to operation c and f = min(τn). The rationale for using min is that if

any one pheromone value is low, then it is likely that c should not be added to the solution

yet. If c has no related operations yet to be incorporated, Blum and Sampels state it is

added to the partial solution without considering any other candidate operations, which

can be emulated in these equations with τ1 =∞.

4.2.2 Notes on Higher Order Pheromone Representation Usage

Defining Cc, f and τ1 for a Problem

The definition of Cc is problem specific and typically apparent from the higher order so-

lution characteristics being modelled. For instance, if a second order pheromone is used

to learn whether pairs of components should be part of the same solution, then intuitively

Cc should contain those components already in the partial solution. Alternatively, given

a different second order pheromone that models pairs of components that should not be

part of the same solution (or where there is a relationship based on the relative order of

the pairs of components as in Blum and Sampels (2002a)), and faced with a first order

decision about whether to include a candidate characteristic, intuitively Cc should con-
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Table 4.2: Sample of ways to customise Equation 4.1.

Cc f τ1 Example(s)
∈ sp sum unknown Roli et al. (2001), Solnon (2002)

equivalent to 1 Fenet and Solnon (2003)
1st order pheromone Blum (2002b)

mean 1 (τ0 = 1) Costa and Hertz (1997), Schoofs and Naudts (2000)
1 (τ0 = 20) Ducatelle and Levine (2001, 2004)

6∈ sp min τmax Socha et al. (2002)
∞ Blum and Sampels (2002a)

tain only those components that have not yet been added to the partial solution. Both

these assertions are based on the rationale that pheromone information is used to deter-

mine which solution characteristic(s) to include at each step, rather than which should be

ignored (leading to some other solution characteristic(s) being chosen instead).

However, the definitions of f and τ1 can be somewhat separate from the solution char-

acteristics modelled and so may appear to be arbitrary choices. Nevertheless, based on

the examples given in the previous section a number of observations may be made. Ta-

ble 4.2 categorises the examples based on whether the elements of Cc come from the partial

solution or its complement, the aggregation function used and definition of τ1.

With regards to the aggregation function f , all the cited examples use min, mean or

sum, while none uses max. The use of the min function can be characterised as a cautious

approach—any single low pheromone value can in effect veto the first order decision being

considered. Conversely, max allows any single high pheromone value to make the decision

more likely. The functions sum and mean allow each higher order solution characteristic’s

pheromone value to influence the first order decision, with the choice of whether to use

sum or mean dependent on the number of higher order solution characteristics available

for each candidate first order characteristic (or component). In the examples cited, sum is

used in all cases where |Cc| = |Cc′| ∀ c 6= c′ for a fixed partial solution size, while mean is

used in those cases where this is not the case.

Notably, min is used only in those cases where the elements of Cc are not present in

the partial solution. In the cited ACO algorithm for the GSP (Blum and Sampels, 2002a),

where each solution characteristic indicates the relative order of related operations, the

rationale for using min is that if any pheromone value is low then there must exist at least

one related operation that should be scheduled before the one being considered. Hence,

as the relative order of many different subsets of operations is important, taking the mean

pheromone value might unfairly represent the true learned utility of placing a particular

operation next. The min function is also used in the ACO algorithm for the UCTP (Socha

et al., 2002), where higher order pheromone values are used to learn which events should
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not be placed in the same timeslot. Conceivably, taking the minimum value between

the current event and those already assigned a timeslot might produce similar results to

considering only those other events yet to be scheduled. However, taking this approach may

allow an event to be placed in a timeslot that suits another as yet unscheduled event better

and which may increase solution cost if that other event were placed in the same timeslot.

Consequently, taking the minimum value may avert such undesirable actions. Thus, in

both examples, using min in relation to those solution components or characteristics that

have yet to be added to a partial solution appears to avoid making those decisions that may

force the algorithm to make an inferior decision later in solution construction. In contrast,

the use of sum and mean with pheromone values associated with solution components or

characteristics already in a partial solution appears to promote the selection of a solution

component or characteristic that is well suited to the existing partial solution.

In those examples where τ1 is clearly defined and the elements of Cc are taken from

the partial solution, the first solution characteristic is chosen either randomly or using

a first order pheromone representation when used in conjunction with sum, while it is

assigned a constant value when used with mean. There is no clear relationship between the

constant value assigned to τ1 and τ0, although differences between the two will conceivably

lead to different behaviour in the algorithm. In contrast, where the elements Cc do not

come from the partial solution, τ1 is set to either a high value (τmax) or a candidate

component/characteristic is chosen as if it had a high value (such as ∞).

Efficiency Considerations

When implemented, higher order pheromone representations require greater computational

resources than their first order counterparts. In terms of storage overhead, nth order

pheromones derived from a first order pheromone using Definition 3 grow exponentially

with n. However, higher order pheromones are typically only second order, representing a

squaring of the number of solution characteristics modelled and hence pheromone values

that must be stored. This leads to a relatively small memory overhead.

Nevertheless, higher order pheromone information necessarily takes longer to process

than that from a first order representation as multiple pheromone values must be con-

sidered for each solution characteristic. This increased computational overhead must be

weighed against any potential improvements to the quality of solutions produced by the

algorithm. For example, Blum’s (2002b) comparative study of first and second order phero-

mone representations for the KCTP found that, given the same amount of execution time,

the latter produces fewer solutions (due to its increased computational overhead). Blum

concludes that the first order pheromone is consequently a better choice for this problem.

Roli et al. (2001) compare the performance of an ACO algorithm for constraint satisfac-
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tion using three alternative pheromone representations, including a first order pheromone

that models which assignments should be made and a second order pheromone modelling

which pairs of assignments should be made. Both representations performed similarly

well (a third representation that models which assignment to make after another assign-

ment performed poorly). However, again due to the increased computational overhead for

the second order pheromone, the first order representation is promoted as the best-suited

to that problem. Both studies suggests that if a simpler pheromone representation ade-

quately models a problem, it is unnecessary to use a higher order (commonly, a second

order) pheromone representation.

4.3 Summary

Despite the increasing range of pheromone representations described in the ACO litera-

ture, no consistent language or notation has been developed to describe pheromone repre-

sentations. This chapter introduced a notation for describing pheromone representations

based on the solution characteristics they model. An assumption of the notation is that

a solution is described by a proper subset of the solution characteristics modelled by a

pheromone. The notation suits the majority of pheromone representations used in ACO

implementations, but may also be applied to atypical pheromone representations with little

augmentation. Table 4.3 shows the notation applied to a sample of pheromone representa-

tions used in the literature, with some additional examples of problems with which certain

pheromone representations may be used.

Higher order pheromones require additional specification given the increased number of

pheromone values that may be used to influence a single decision. A general framework has

been presented into which a number of existing higher order pheromones can be placed. A

key feature of any implementation of a higher order pheromone is the function it uses to

produce a single pheromone value from the many involved in a decision about a candidate

component (or characteristic). The nature of this function appears to be related to whether

the solution components or characteristics to which it is related are part of the partial

solution or yet to be included. Further investigation is required to determine if general

rules can be devised for choosing the most suitable aggregation function for a given higher

order pheromone.

In many problems there exists a choice concerning which pheromone representation to

use. Given that ACO algorithms use pheromone information to bias constructive decisions,

there will necessarily be an interaction between any underlying constructed solution biases

and the pheromone representation employed. This interaction is the subject of the next

chapter.
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Table 4.3: Pheromone representations used in the literature and potentially applicable.
Abbreviations used: “rel’d succ.” means pairs of related components where their relative
order is important; “group” means pairs of items assigned to the same group.

Problem Pheromone Example
Subset Problems
MKP C Leguizamón and Michalewicz (1999)

Sp × C;C2 (copresent) —
SCP C Fiorenzo Catalamo and Malucelli (2001)

Sp × C;C2 —
KCTP C Blum (2002b)

Sp × C;C2 Blum (2002b)
MCP Sp × C;C2 (copresent) Fenet and Solnon (2003)
SPP Cit × Cres Maniezzo and Milandri (2002)
Permutation/Routing Problems
TSP C× C Dorigo et al. (1991)
VRP C× C Bullnheimer et al. (1997)
SOP C× C Gambardella and Dorigo (1997)
Scheduling Problems
JSP C× C Colorni et al. (1994)

Sp × C;C2 (rel’d succ.) Blum and Sampels (2002a)
FSP C× P Stützle (1998)
OSP Sp × C;C2 (rel’d succ.) Blum and Sampels (2002a)
SMTTPa C× P Bauer et al. (1999)
GSP C× C Blum and Sampels (2002a)

C× P Blum and Sampels (2002a)
Sp × C;C2 (rel’d succ.) Blum and Sampels (2002a)

Assignment Problems
QAP Cit × Cres Maniezzo and Colorni (1999)
FAP Cit × Cres Maniezzo and Carbonaro (2000)
GAP Cit × Cres Lourenço and Serra (2002)
Group Assignment Problems
GCP Sp × Cit × Cres;C2

it (group) Costa and Hertz (1997)
BPP Sp × Cit × Cres;C2

it (group) Ducatelle and Levine (2001, 2004)
Timetabling
UCTP Cit × Cres Socha et al. (2002)

Sp × Cit × Cres;C2
it (group) Socha et al. (2002)

Constraint Satisfaction Problems
C× C Solnon (2000)
Sp × C;C2 Roli et al. (2001)

Others
AIRLAND Cit × C′res Randall (2002b)
SCSPb Sp × C;L× I Michel and Middendorf (1999)
NETSYNTH C Randall and Tonkes (2001)
2DHPPF Cit × Cres Shmygelska et al. (2002)
BUS Cit × Cres Forsyth and Wren (1997)
aSMTTP and variations.
bL is the set of strings in the problem, while I is the set of indices of characters in those strings.
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Chapter 5

Interaction Between Constructed

Solution Biases and Pheromone

Chapter 3 described the biases that may be present in any constructive optimisation algo-

rithm, and which consequently may affect a learning constructive algorithm by exposing it

to some solutions more frequently than others. Chapter 4 provided a formal description of

the learning mechanism used in ACO, the pheromone representation, and described how

different pheromone representations are suited to different COPs. This chapter considers

how any underlying constructive biases interact with different pheromone representations.

Section 5.1 describes the mechanisms of interaction from two different perspectives. The

first considers low level interactions that are a direct result of constructed solution biases.

Given that the effects of these underlying biases become difficult to detect as problem size

grows, the second discusses higher level interactions that can be linked most directly to the

observed behaviour of ACO when using different pheromone representations. The work

of Blum (2004) in this area is discussed and augmented by findings made by the study of

biases inherent in the constructive process. Section 5.2 is a case study of three commonly

used pheromone representations for the JSP, GSP and OSP and reveals the interesting and

potentially advantageous structure these problems have when solved by ACO. Section 5.3

briefly describes the interaction between constructed solution bias and pheromone for two

other problems whose structure is less obviously exploited as that in the JSP, GSP and

OSP. Two problems with no constructed solution biases are also discussed.

5.1 Mechanisms of Interaction

Different pheromone representations interact with the same combinatorial optimisation

problem in different ways. This is because the different solution characteristics they model

correspond to different patterns of arcs in the construction tree for a given problem. For
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instance, a solution characteristic (i, j) ∈ C × C is used in all places that component j

appears immediately after component i, while a solution characteristic (j, k) ∈ C × P is

used every time component j is placed at position k. These solution characteristics may

correspond to some of the same decisions in the construction tree, but not all. Hence, a

single solution characteristic (and its corresponding pheromone value) can appear in many

different contexts; the nature of the decisions it affects depends on the number and location

of these decisions in the construction tree and so, indirectly, on the decisions made on the

paths leading to those points. A certain choice in one context is not necessarily a good

choice in all contexts. These differences result in differing reactions to any inherent bias.

The main example COP considered in this chapter is the GSP and it is with regards to

this problem that the interaction between bias and pheromone representation is discussed.

As the three pheromone representations that have been used in ACO algorithms for this

problem—C×C, C×P and Sp×C; C2 (related succeeding), where C is the set of operations—

are referred to frequently throughout this chapter, abbreviated names will be used for each.

Hence, C× C is denoted by PHsuc, C× P by PHpos, and Sp × C; C2 by PHrel. These names

are similar to those attributed to these pheromone representations by Blum and Sampels

(2002a).

5.1.1 Low Level Interactions

Considering an ACO algorithm that uses only pheromone to guide its decisions, a solution

characteristic will be reinforced with a frequency related to the distribution of decisions

in the construction tree which it influences. If those decisions appear largely in sequences

with an inherently high probability, due to a representation or construction bias, then it

is more likely to be reinforced than if those decisions were to appear in sequences with an

inherently lower probability. The influence (feedback) of a solution characteristic’s phero-

mone value on decisions in subsequent iterations of an ACO algorithm will depend on this

same distribution. Moreover, each solution characteristic will not necessarily correspond

to the same number of decisions in the construction tree. This last issue becomes critically

important as problem size grows and is discussed in the next section.

Consider the jsp2-2 instance, reproduced with all problem details in Figure 5.1, and its

construction tree reproduced in Figure 5.2. The mapping of solution characteristics from

PHsuc to arcs in this construction tree is such that solution characteristic (1, 2) appears in

50% of all sequences, yet due to the inherent construction bias has a 62.5% probability

of being updated during the first (essentially undirected) iteration of an ACO algorithm.

In contrast, solution characteristic (3, 2) appears in 162
3
% of sequences, but due to the

construction bias has only a 12.5% probability of being updated under the same conditions.

The fact that these two solution characteristics appear in a different number of sequences
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a) b) c) 

Figure 5.1: A JSP instance described by Blum and Sampels (2002b) a) A small JSP
instance, jsp2-2, with O = {1, 2, 3, 4}, J = {J1 = {1, 2}, J2 = {3, 4}}, 1 ≺ 2, 3 ≺ 4,
M = {M1 = {1, 4}, M2 = {2, 3}}, p(1) = p(4) = 10, p(2) = p(3) = 20. i ≺ j indicates
i must be processed before j. b) The three solutions to this problem described in terms
of the relative order of operations that require the same machine. C(s1) = C(s3) = 60,
C(s2) = 40. c) The six sequences that may be constructed and the solutions to which they
correspond.
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Figure 5.2: Construction tree for jsp2-2 (see Figure 3.1 for problem description). Arcs
are labelled with the probability of their being traversed if using ACOundir. End points
are labelled with the solution represented by that path. Aggregate solution probabilities
appear on the right.

is not a result of the representation bias in the JSP—a representation bias does not apply

to individual sequences which are by definition unique—but is a feature of the kinds of

solution characteristics that PHsuc models, an issue discussed in more detail in Section 5.2.

As an illustration of the ways in which the solution characteristics from different phero-

mone representations map onto the construction tree for the jsp2-2 instance, Figures 5.3

and 5.4 show the patterns of decisions affected using different pheromone representations

if pheromone values are updated by sequence 〈1, 2, 3, 4〉 (corresponding to solution s1)

and sequence 〈1, 3, 4, 2〉 (corresponding to solution s2) respectively. The three pheromone

representations considered are PHsuc, PHpos and PHrel.

Using sequence 〈1, 2, 3, 4〉 to update pheromone values from PHsuc reinforces solution

characteristics (〈〉, 1), (1, 2), (2, 3) and (3, 4), thereby making it more likely that operation

1 would be placed first, operation 2 would be placed immediately after operation 1 (regard-

less of operation 1’s position), operation 3 would be placed immediately after operation 2

(regardless of operation 2’s position) and operation 4 would be placed immediately after

operation 3 (regardless of operation 3’s position). If PHpos were used, solution character-
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istics (1, 1), (2, 2), (3, 3) and (4, 4) would all be reinforced, thereby making it more likely

that operation 1 would be placed in position 1, operation 2 in position 2, and so on. These

pheromone changes only increase the likelihood of producing the same sequence again, as

the only decisions associated with these pheromone values that are not part of this sequence

are for placing operation 4 in last position when there are no other options. If PHrel were

used, solution characteristics (1, 4) and (2, 3) would be reinforced, thereby making it more

likely that operation 1 would be scheduled before operation 4 and that operation 2 would

be scheduled before operation 3.

Using sequence 〈1, 3, 4, 2〉 to update pheromone values from PHsuc reinforces solution

characteristics associated with that sequence as well as one pheromone value associated

with the sequence corresponding to solution s3. If PHpos were used, solution characteristics

for that sequence are reinforced, as well as one solution characteristic from a different

sequence, although the same solution. If PHrel were used, solution characteristics (1, 4)

and (3, 2) would be reinforced, thereby making each of the four sequences corresponding

to solution s2 more likely in later iterations. Given that solution s2 is the optimal solution

to this instance, updating PHsuc with this (optimal) sequence actually makes one of the

suboptimal solutions (s3) more likely, while updating PHrel with the same sequence makes

only the optimal solution more likely. This interesting feature of the JSP using PHsuc and

PHrel is discussed in detail in Section 5.2 below.

As discussed in Section 3.5, as problem instance size grows the probability of any one

solution becomes extremely small, which makes the effects of any underlying bias diffi-

cult to detect. Moreover, distribution of solution characteristics modelled by a pheromone

representation becomes increasingly complex. Consequently, low-level interactions between

constructed solution biases and pheromone representations may not have immediately iden-

tifiable effects on the observed behaviour of an ACO algorithm. The next section considers

how the observable behaviour of an ACO algorithm may be predicted using knowledge of

the pheromone representation it employs.

5.1.2 High Level Interactions and Competition-Balanced Sys-

tems

As problem instance size grows the number of sequences representing solutions |S| grows

at least as fast as the growth in solutions, which is typically exponential. In problems

with a representation bias |S| will grow even faster. However, the number of solution

characteristics modelled by a pheromone representation |C| grows at a slower rate. For

instance, for the MKP, |S| = O(n!), while |C| = O(n), where n is the number of items.

In the GAP, when using a static assignment order, |S| = O(mn), while |C| = O(m · n),

where n is the number of tasks and m is the number of agents. Consequently, the average
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Figure 5.3: Decisions affected by use of sequence 〈1, 2, 3, 4〉 (corresponding to solution s1 to
JSP instance jsp2-2) to update pheromone values using a) PHsuc, b) PHpos, and c) PHrel.
Dashed lines indicate the actual construction path taken. Affected decisions (i.e., arcs) are
shown in bold; where only one choice is available the corresponding pheromone value has
no influence and hence that arc does not appear in bold.
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number of sequences in which each solution characteristic appears (denoted by |Sc|) grows

with instance size and any differences between |Sc| for different solution characteristics will

influence which are most likely to be reinforced by solutions produced by the algorithm.

In a separate effort to understand the way different pheromone representations will

behave for a given problem, Blum (2004) introduces the concept of a competition balanced

system. In terms of ACO this is defined as a pheromone representation consisting of

solution characteristics that appear in the same number of sequences produced by the

algorithm. Blum (2004, p.74) provides the following definition of a competition-balanced

system (CBS) (explanatory notes appear in square brackets):

Given a model P of a CO [combinatorial optimisation] problem, we call an ACO

algorithm together with the instance P of P to which it is applied a competition-

balanced system (CBS), if the following holds: Given a feasible partial solution

sp and the set of solution components [equivalent to a solution characteristic as

described in Chapter 4] N(sp) that can be added to extend the partial solution

sp, each solution component [i.e., characteristic] c ∈ N(sp) is a component of the

same number of feasible solutions (in terms of sequences built by the algorithm)

as each other solution component c′ ∈ N(sp), c 6= c′.

Note that the term solution component in this definition is equivalent to the definition of

a solution characteristic defined in Chapter 4. If a pheromone model applied to a particular

problem instance is not a CBS, bias may be observed. The issue of what effects this bias

may have is discussed in Sections 5.2 and 5.3 below.

The definition of a CBS does not explicitly incorporate the influence of the underlying

constructed solution biases responsible for the low-level interactions described in the previ-

ous section. However, the presence of such biases is the underlying determinant of whether

or not a pheromone representation is a CBS. Furthermore, it is possible for a pheromone

representation to be a CBS, yet not be free from bias.

Theorem 1 A CBS (as defined by Blum (2004)) is not necessarily free from solution bias.2

Proof When constructing solutions to the OSP as permutations of operations, both PHsuc

and PHpos are CBSs, as each solution characteristic appears in the same number of se-

quences (since all permutations of operations are feasible). However, the OSP also has a

representation bias and hence some solutions will be represented by larger sets of solution

characteristics, corresponding to each sequence representing those solutions. The resulting

pheromone–problem combination is therefore not free from solution bias. �

The following Lemmas demonstrate that, for all practical purposes in other circum-

stances, constructed solution biases will prevent any pheromone representation from being

a CBS.
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Lemma 1 A representation-oriented pheromone representation applied to a COP with a

construction bias cannot be a CBS. 2

Proof A representation-oriented pheromone representation (as defined in Section 4.1.1)

contains solution characteristics that describe each sequence uniquely. Consequently, in

order that such a pheromone representation be a CBS, each sequence must represent a

feasible solution. This criterion is not met by a problem with a construction bias. �

Lemma 2 An identity-oriented pheromone representation applied to a COP with a repre-

sentation bias cannot be a CBS. 2

Proof An identity-oriented pheromone representation (as defined in Section 4.1.1) con-

tains one set of solution characteristics for each distinct solution. In order that such a

pheromone representation be a CBS, each solution must be represented by the same num-

ber of sequences. This criterion is not met by a problem with a representation bias. �

Notably, while the representation-oriented PHsuc and PHpos applied to the OSP are

CBSs (although not free from the underlying representation bias), the identity-oriented

PHrel applied to the same problem is not a CBS.

Lemma 3 An identity-oriented pheromone representation applied to a COP with a con-

struction bias cannot be a CBS. 2

Proof Given Lemmas 1 and 2, the Lemma need only be proved for those cases where

the pheromone is not also representation-oriented (see Lemma 1) and where each solution

is represented by the same number of sequences (see Lemma 2). The latter implies that

each solution is described by the same number of solution characteristics (otherwise the

problem must have a representation bias due to the different number of permutations of

solution characteristics that would result if solutions were described by a variable number

of characteristics). In order that such a pheromone be a CBS, every solution characteristic

must appear in the same number of combinations (of solution characteristics) as every

other. A construction bias implies that this criterion cannot be met, as some solution

characteristics must appear less often than others for the degree of nodes within each level

of the construction tree to be non-uniform. �

Based on the above, it is possible to state the following Theorem.

Theorem 2 If a constructive algorithm applied to a COP has a construction bias then

there does not exist a representation- or identity-oriented pheromone representation that is

a CBS. 2
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Proof The statement is a direct consequent of Lemmas 1 and 3. �

Given these findings, it is plausible that if a problem has no constructed solution bias

then for all practical cases any pheromone representation for it will be a CBS.

The concept of a CBS helps to identify those situations where a bias may be observed

in the frequency with which different pheromone values are updated by solutions produced

by an ACO algorithm, without requiring full knowledge of the distribution of solution

characteristics in the construction tree. Furthermore, the existence of an underlying con-

struction bias—a feature which is typically easily identified from knowledge of the problem

and the constructive algorithm used—can indicate that no pheromone representation can

be a CBS for a particular problem. However, neither of these can necessarily be used to

predict exactly how a particular pheromone will be biased.

Only with specialised insight into the nature of a problem and of the likely frequency of

solution characteristics can estimates be made of the number and kind of sequences each

characteristic will appear in. Estimates of the likely bias towards reinforcing particular

solution characteristics, including taking account of underlying constructed solution biases,

may only proceed if the problem in question has clearly identifiable types of solution, with

which those solution characteristics are strongly associated, and a bias favouring one type

over another. The following case study describes a problem which has these qualities and

hence about which predictions may be made by studying its low-level constructed solution

biases as well as the high-level feature of the number of sequences in which each solution

characteristic appears.

5.2 Case Study: Pheromone Representations for the

JSP, GSP and OSP

The following case study illustrates the high level interactions that can occur between

pheromone and a problem’s construction tree. In empirical work conducted by Blum

and Sampels (2002b) and in the current investigation, PHsuc pheromone has been found

to perform poorly on permutation scheduling problems such as the JSP and GSP. Its

performance is worst on the JSP, but improves as problem constraints are eased so that its

performance, while not the best, is quite good on the OSP. Investigation of the mechanisms

underlying this behaviour reveals that these problems have an interesting structure that,

at the construction tree level, introduces a bias towards good solutions and, when using

different pheromone representations, can serve to bias an ACO algorithm either towards or

away from good solutions. The structural aspects of construction trees for these problems

are considered first.
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Figure 5.5: Nine operation, three job, three machine JSP and OSP instances: jsp3-3

and osp3-3. In both instances O = {1, . . . , 9}, J = {J1 = {1, 2, 3}, J2 = {4, 5, 6}, J3 =
{7, 8, 9}}, M = {M1 = {1, 5, 9}, M2 = {2, 6, 7}, M3 = {3, 4, 8}}, p(1) = p(5) = p(9) = 10,
p(2) = p(6) = p(7) = 20, p(3) = p(4) = p(8) = 30.

Blum and Sampels (2002b) and Blum (2004) have found that sequences corresponding

to poor solutions tend to have runs of operations from the same job. They measure this

characteristic of sequences by introducing a line scheduling factor,1 given by

fls(s) =

∑|O|−1
i=1 δ(s, i)

|O| − |J |
(5.1)

where s[i] is the operation in the ith position of s, and δ(s, i) = 1 if s[i] belongs to the same

job as s[i + 1], 0 otherwise. Hence, the value of fls is in [0, 1], where 1 indicates that all

operations for each job are contiguous, while 0 indicates that no pairs of operations from

the same job are adjacent in the sequence.

Sequences with a high line scheduling factor generally correspond to poor solutions to

these problems. Intuitively this is to be expected as good schedules allow operations from

different jobs to run in parallel. A sequence in which all operations from one job appear in

a contiguous group can produce a schedule which contains lengthy delays for other jobs’

operations, which must wait for operations from the first job to finish. This intuitive claim

is confirmed by empirical results. Figure 5.5 describes a JSP and an OSP instance, both

with nine operations, three jobs and three machines. The top row of Figure 5.6 plots the

mean fls value of sequences for each solution against the cost of the solution represented

for these two instances.

In GSP instances that are not OSP instances, a construction bias always exists in favour

of solutions with a high line scheduling factor. Take for example the JSP. In a JSP with n

jobs, n operations are available to be added to the sequence at each step (i.e., one from each

job) until all the operations from one of the jobs have been added to the sequence, after

1Blum (2004) refers to this measure simply as a sequencing factor, denoted by fseq.
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which n− 1 operations are available. As each job’s set of unscheduled operations becomes

empty, the number of available operations becomes smaller. Thus, selecting an operation

from the same job as that last added to the sequence decreases the number of steps until

that job’s set of unscheduled operations becomes empty and consequently makes it more

likely that the same will have to be done with operations from other jobs later in solution

construction. Consider a JSP with n jobs of m operations each. A sequence with fls = 1

can be produced on a path with m steps of n options, followed by m steps of n−1 options,

m steps of n − 2 options and so on, finishing with m steps of 1 option only. Denote this

sequence by sfls=1. Consider an alternative sequence constructed by selecting an operation

from each job in a round-robin fashion, which accordingly has fls = 0. The path for such

a sequence will have (m − 1) · n + 1 steps at which every job has at least one remaining

operation to be scheduled, followed by n − 1 steps with decreasing numbers of options,

n − 1, n − 2, . . . , 1, as each job’s set of unscheduled operations becomes empty. Denote

this sequence by sfls=0.

Given that the probability of a sequence being produced by ACOundir is the inverse of

the product of the number of options at each step, the respective probabilities of sfls=1 and

sfls=0 are

P (sfls=1) =
1∏n−1

i=0 (n− i)m
(5.2)

and

P (sfls=0) =
1

n(m−1)·n+1 · (n− 1)!
. (5.3)

In general, P (sfls=1) > P (sfls=0) ∀m,n > 1.

Except for the OSP, where all sequences have equal probability, a sequence with a high

fls value typically has a higher probability. The disparity in probability between sequences

with fls = 1 and those with fls = 0 is greatest on the JSP and diminishes as operation

precedence constraints are eased (i.e., in GSP instances with groups containing increasing

numbers of operations), becoming zero in OSP instances. Thus sequences corresponding

to poor solutions, which typically have a high line scheduling factor, are likely to have

a relatively high probability of being found in the construction trees for JSP and GSP

instances (excluding OSP instances). This is illustrated in the second row of Figure 5.6.

However, solutions represented by sequences with predominantly high line scheduling

factors are generally represented by fewer sequences, across all GSP instances. The third

row of Figure 5.6 plots the mean line scheduling factor of solutions’ sequences against

the number of sequences representing that solution. Intuitively, sequences with a high

fls value can tolerate only small perturbations before the solution represented changes.

Certainly, in the JSP, a sequence with fls = 1 can only be altered slightly before the

relative order of related operations is changed and the sequence represents a different
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solution. Accordingly, the lower the line scheduling factor, the easier it is to perturb the

sequence without changing the relative order of related operations. This suggests that

low cost solutions, which are generally represented by sequences with a low fls value, are

overrepresented in the construction tree.

Indeed, the representation bias, which typically favours good solutions to these prob-

lems, can overwhelm the construction bias that typically favours poorer solutions. The

fourth row of Figure 5.6 plots the mean line scheduling factor of solutions’ sequences

against the overall probability of finding that solution using ACOundir.

While the effects of these low level biases are not easily observed on large instances, the

mechanisms that produce them also determine how the different pheromone representations

available for this problem behave. The remainder of this section focuses on the way PHsuc

and PHrel pheromones interact with these problems. PHpos is also discussed, although it

shows a less obvious bias than the other two. Blum and Sampels (2002b) observed high fls

values (up to 1) for sequences produced by PHsuc applied to GSP instances other than the

OSP. In contrast, fls values when using PHrel were consistently low (less than 0.1) across

the JSP, GSP and OSP. This result has been found across a range of instances of varying

size. A high fls value was found to be a good predictor of high cost regardless of problem

size. Figure 5.7 plots fls values against solution cost for sequences produced by ACO

algorithms using PHsuc, PHrel and PHpos applied to the la38 JSP instance.2 Data were

collected by sampling every 100th sequence produced by an ACO algorithm producing a

total of 30,000 sequences.3 As Figure 5.7 shows, while PHpos produces many poor solutions

to this instance it also produces solutions better than those found by ACOundir.

Notably, the probability of producing these solutions if using ACOundir follows the

same pattern established for those smaller instances for which complete exploration of the

construction tree is possible. Figure 5.8 plots fls values against the expected probability of

the corresponding sequences being produced by ACOundir for the same sample of solutions

used in Figure 5.7.

An insight into the strong bias PHsuc exhibits towards solutions with a high fls value

can be obtained in a number of ways. The first is in terms of CBSs. In the OSP, every

solution characteristic from PHsuc appears in the same number of sequences (i.e., solution

representations), so this pheromone is a CBS. In more constrained GSP instances, and

especially in the JSP, the use of PHsuc pheromone ceases to produce a CBS. Indeed, when

using PHsuc pheromone in such instances, solution characteristics corresponding to placing

two operations from the same job in succession appear in proportionally more sequences

than those for which it is not the case. In contrast, solution characteristics from PHrel

2This instance is part of a benchmark JSP set described by Lawrence (1984).
3The actual algorithm used is a modification of Ant Colony System from which heuristic information

and its greedy bias (q0) have been removed.
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that are associated more strongly with sequences with a low fls value appear in a greater

number of sequences than those characteristics that are not. Thus, in problems where a

high fls value is strongly predictive of a high solution cost, use of PHsuc will make good

solutions increase the pheromone associated with poor solutions, whereas use of PHrel will

result in even poor solutions increasing pheromone associated most strongly with good

solutions. There is no evidence that solution characteristics from PHpos that may lead to

poor solutions appear more frequently than those associated with good solutions. Indeed,

the results of studies described in Chapter 7 show that its performance on this JSP instance

is not indicative of its performance on other JSP instances.

Figure 5.9 shows plots of the number of sequences in which each solution characteristic

appears against the mean cost of the solutions represented by those sequences, for each

of PHsuc, PHpos and PHrel applied to the jsp3-3 instance. The mean cost of all sequences

is shown as a dashed line. All three plots show some commonality in structure, with

solution characteristics that appear in predominantly poor solutions having the lowest fre-

quency and solution characteristics that appear in predominantly good solutions having a

frequency intermediate between the extremities. This relatively small degree of similarity

is to be expected given that the different solution characteristics modelled will have some

overlap in the features of solutions they describe. However, at the extremities of frequency,

the distribution for PHsuc shows a range of solution costs associated with solution charac-

teristics, while PHpos and PHrel have much tighter ranges. That is, PHpos and PHrel show a

stronger relationship between frequency of usage and associated solution cost. Moreover,

those solution characteristics that correspond to the best solutions have a frequency of less

than half the maximum in PHsuc, just over half the maximum in PHpos and 84% of the

maximum in PHrel. Additionally, the most frequently occurring solution characteristics in

PHrel are also associated with good solutions. Similar results were obtained for other small

instances.

Consideration of the topologies of construction trees for these problems reveals why the

solution characteristics from PHsuc and PHrel are so strongly biased towards different kinds

of sequences and hence, solutions. Given that selecting an operation from the same job

as that most recently selected decreases the likelihood that successive pairs of operations

placed later will be selected from different jobs, those solution characteristics from PHsuc

that correspond to placing successive operations from different jobs are also less likely to

appear in those sequences. In contrast, partially constructed sequences with a low fls

value restrict the set of available operations less and so still allow successive operations

from the same job to be placed. Thus, the same mechanism that introduces a construction

bias (which has little detectable effect on larger instances) does have an effect on the

distribution of solution characteristics from PHsuc in the construction tree. Conversely,
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Figure 5.9: Frequency of usage of solution characteristics against the mean cost of solutions
they describe for jsp3-3 instance, for each of (a) PHsuc, (b) PHpos and (c) PHrel. The mean
cost of all sequences is shown as a dashed line.
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many of the operation precedence relationships established by sequences with a high fls

value are largely restricted to those sequences and are not present in those sequences that

may be perturbed while maintaining the solution represented. Sequences with a high fls

value will still contain some of those operation precedence relationships that appear in

better solutions and so overall the number of sequences that these precedence relationships

appear in is relatively high. The representation bias in these problems serves to accentuate

the effect, as all sequences for a single solution exhibit the same solution characteristics in

PHrel.

The behaviour of PHpos is less easy to explain, either in terms of CBSs or by consid-

eration of construction tree topology. Analysis of the frequency of solution characteristics

associated with poor solutions reveals they are less likely to be reinforced than those associ-

ated with better solutions. Furthermore, unlike PHsuc, the placement of an operation from

the same job as the last operation does not relate to a single solution characteristic, as each

operation will have a range of possible positions in the sequence. However, PHpos clearly

produces many solutions of poorer quality than those produced by ACOundir. Possibly this

is because PHpos can learn to place an operation in a location likely to be immediately

after an operation from the same job, so a chance encounter with a poor solution can make

similar poor solutions more likely. In contrast, PHrel has no solution characteristics that

model such a choice.

5.3 Pheromone and Bias Interactions in Other Prob-

lems

In the JSP, examination of the frequency of individual solution characteristics against

the mean value of solutions they represent reveals that certain solution characteristics

are strongly associated with solutions of a particular cost. Indeed, using PHrel with the

jsp3-3 instance, the relationship between the number of sequences in which a solution

characteristic appears and the mean cost of solutions it describes approaches a linear one,

with a correlation coefficient of −0.87. However, the frequency of solution characteristics

compared with the mean value of solutions they represent is insufficient to explain the

strong bias PHsuc exhibits towards poor solutions. It is only explained by the fact that

making one “poor” decision makes other decisions of a similar kind more likely.

The obvious structure in the JSP (and other non-OSP GSP instances) raises the ques-

tion of whether other problems also have an exploitable structure. Consequently, a similar

examination of pheromone representations for the MKP and GAP was carried out. The

TSP and QAP, which are without constructed solution biases, are also discussed.
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5.3.1 MKP

In the MKP, it is expected that there exists a strong negative correlation between an

item’s resource requirements (often referred to as weight) and its frequency of inclusion

in solutions. Figure 5.10a plots the mean proportion of knapsack capacity used against

the frequency of inclusion in sequences for each item in the mknap1-15item instance. A

linear regression of the data yields a correlation coefficient of −0.97. Linear regression

analyses of the same data for the mknap1-6item and mknap1-10item instances also show

strong negative correlations of ρ = −0.91 and −0.94 respectively. Accordingly, it would

be expected that solution characteristics that correspond to the inclusion of items with

greater resource requirements would occur less frequently in solutions than those with

lower requirements. Considering solution characteristics from the C, Sp×C; C2 (copresent),

C×C, and C×P pheromone representations applied to the mknap1-15item instance, linear

regression analyses of solution characteristic frequency against the resource requirements of

the item(s) included by each characteristic show strong negative correlations of ρ = −0.95,

ρ = −0.96, ρ = −0.96, and ρ = −0.93 respectively.4

In the MKP, item weight and value may be related. The correlations between the

two for the mknap1-6item, mknap1-10item and mknap1-15item instances are ρ = 0.742,

ρ = 0.909 and ρ = 0.828 respectively. Consequently, it would be expected that solution

characteristics associated with high value solutions would also appear in fewer sequences

and so be reinforced less frequently. Figure 5.10 parts (b) through (e) plot the frequency

of solution characteristic usage against the mean value of solutions represented for the

mknap1-15item instance for the C, Sp × C; C2 (copresent), C × C and C × P pheromone

representations. Examination of the plots shows that the data fall into three distinct

groups. One group, with a low frequency but high mean solution value, consists solely of

data for solution characteristics associated with including the heaviest, but most valuable

item in the problem. Another, with a low frequency and low mean solution value, consists

solely of data for solution characteristics associated with including the next heaviest item,

which has a value slightly above average. The other group consists entirely of data for

solution characteristics associated with including other items in the problem and is located

around the mean value of all sequences. This suggests that although solution characteristics

associated with items that are both valuable and resource intensive may be updated less

frequently, overall the majority of solution characteristics appear in so many solutions (with

a correspondingly large range of values) that any bias towards one characteristic may not

necessarily bias the search towards good or bad solutions.

The relative performance of ACO using the four pheromone representations considered

4While C× C and C× P pheromone representations are not typically used with subset problems, they
are supported by any ACO algorithm that constructs solutions as a sequence of the items included.
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here is compared in Chapter 7.

5.3.2 GAP

A similar analysis to that above was made of the GAP. As with items in the MKP, assign-

ments with relatively high capacity utilisation would be expected to occur less frequently

in the solutions that may be produced. Linear regression of the proportion of an agent’s

capacity used by an assignment against that assignment’s frequency of use, for gap1-1

and gap2-1 instances, shows moderate correlations of ρ = −0.73 and ρ = −0.79 respec-

tively. Figure 5.11a plots the proportion of agent capacity used against the frequency of

inclusion in sequences for each assignment in the gap2-1 instance. Given the GAP has no

representation bias and assuming that infeasible solutions are not allowed to update phero-

mone values, the frequency of usage of solution characteristics from a Cit×Cres pheromone

representation is exactly as Figure 5.11a shows.

Unlike the MKP, high resource requirements are not associated with high value.5 Linear

regression of agent capacity consumed by an assignment and the value of that assignment

produces no correlation in either the gap1-1 or gap2-1, with ρ = −0.01 and ρ = −0.02

respectively. Linear regression of the same relationship for the gap12-1 instance studied in

Chapter 7 also shows no correlation, with ρ = −0.08. Thus, although solution characteris-

tics corresponding to assignments that consume a relatively small proportion of an agent’s

capacity are made more frequently than those that consume more, the absence of a clear

relationship between capacity consumed and value suggests that solution characteristics are

unlikely to be strongly associated with solutions of a particular value. Figure 5.11 parts

(b) and (c) plot the frequency of solution characteristic usage against the mean value of

solutions represented for the gap2-1 instance for Cit×Cres and Cres×Cres pheromone repre-

sentations, using the static, fixed assignment order described in Chapter 3. Although some

solution characteristics with a low frequency of use are clearly associated more strongly

with either high or low value solutions, as a solution characteristic is used in more solutions,

the mean value of those solutions approaches the mean value of all solutions.

The relative performance of ACO using Cit× Cres and Cres× Cres pheromone represen-

tations is compared in Chapter 7.

5.3.3 TSP and QAP

The TSP and QAP are both without representation or construction bias and consequently

it may be expected that all available pheromone representations should be CBSs for these

5While many GAPs are minimisation problems, the gap1 and gap2 problem sets contain maximisation
problems.
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(c) Sp × C;C2 (copresent)
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(d) C× C
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Figure 5.10: Potential bias interaction in the mknap1-15item MKP instance. (a) Mean
proportion of knapsack capacity used by an item against the mean value of solutions it
appears in. (b)–(e) Frequency of use of solution characteristics against mean value of
solutions they describe from C, Sp × C; C2 (copresent), C× C and C× P respectively. The
mean value of all sequences is shown as a dashed line.
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Figure 5.11: Potential bias interaction in the gap2-1 GAP instance. a) Mean proportion
of agent capacity used by an assignment against the mean value of solutions it appears
in. b) and c) Frequency of use of solution characteristics from Cit × Cres and Cres × Cres

respectively against mean value of solutions they describe. The mean value of all sequences
is shown as a dashed line.
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problems. Enumeration of the construction trees for small instances (burma14 for the

TSP, tai12a for the QAP) confirms this supposition. That is, solution characteristics

from C×C and C×P used with the TSP and from Cit×Cres and Cres×Cres used with the

QAP occur with equal frequency within each pheromone type. Although these pheromone

representations are free from bias, they would be expected to learn differently as they

model different solution characteristics and hence produce differing levels of performance

in otherwise equivalent ACO algorithms. The relative performance of these alternative

pheromones for these problems is compared in Chapter 7.

5.4 Summary

The effectiveness of a pheromone representation is strongly influenced by the way the

solution characteristics it models map onto arcs in the construction tree for a problem.

At the lowest level, constructed solution biases will determine the baseline probability of

a particular solution characteristic being updated. However, given the influence of these

low level biases appears negligible on larger instances, the relative number of sequences

each solution characteristic describes may be the ultimate determinant of how often it

is reinforced (at least during the early stages of an ACO algorithm when decisions are

made more randomly). This latter issue is addressed by Blum’s (2004) definition of a

CBS, which is a problem–pheromone combination in which every solution characteristic

appears the same number of times. If a pheromone representation applied to a problem

is not a CBS, that pheromone will exhibit a bias. It has been shown that the presence of

an underlying construction bias will prevent any pheromone representation from being a

CBS. Additionally, when a representation bias is present, a pheromone may be a CBS yet

not be free from solution bias.

In certain problems, notably the JSP and non-OSP GSP instances, the problem’s struc-

ture may serve to bias a search towards certain kinds of solution. When the solution

characteristics modelled by a pheromone representation are associated strongly with one

kind of solution or another, that pheromone representation will consequently show a bias

towards those kinds of solutions. This is especially the case with PHsuc and PHrel applied

to the JSP. The definition of a CBS, together with knowledge of the underlying structure

and biases in this problem, helps explain why PHsuc typically performs poorly, while PHrel

typically performs well.

Unlike the JSP, the MKP and GAP do not appear to have a clearly exploitable structure.

In the MKP, solution characteristics associated with the inclusion of items with few resource

requirements will be updated most frequently. However, even though items with large

resource requirements are often more valuable and so would be expected to be reinforced
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less often, the majority of solution characteristics appear in a wide range of solutions, and

so will not necessarily bias a search towards good or bad solutions. In the GAP, solution

characteristics associated with assignments that utilise less of an agent’s capacity will be

updated most frequently, but in the absence of a strong relationship between capacity

utilisation and value most solution characteristics are not strongly associated with either

good or bad solutions.

Even in problems where different pheromone representations show no obviously ex-

ploitable bias towards solutions of a certain cost/value, as different pheromones model

different aspects of solutions or sequences, they are unlikely to perform equivalently. The

next chapter considers the extent to which pheromone representations may be chosen so

that the potential for bias is reduced.
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Chapter 6

Selecting Pheromone

Representations Considering Bias

Chapters 3 and 5 described the potential for unintentional biases to exist in ACO algo-

rithms. While the representation and construction biases that may exist in any constructive

algorithm are unlikely to have a noticeable effect on large problem instances, the mech-

anisms that produce them can serve to bias the various pheromone representations that

may be used with a particular problem in different ways. Blum (2004) describes how tech-

niques such as stochastic gradient ascent may be used to control how individual pheromone

values are updated to reduce the effects of bias in a given pheromone representation. This

chapter deals with the more fundamental question of whether, given a range of pheromone

representations that may be used with a problem, there is one representation that is best

suited to that problem and which consequently will reduce any bias regardless of how in-

dividual pheromone values are updated. Thus it assumes that the utility of a pheromone

representation is largely separable from the way in which the information it holds is used.

Section 6.1 reviews the findings of one study into the use of an alternative pheromone

update scheme to counteract bias. The remainder of the chapter considers how a pheromone

representation may be chosen such that it naturally works against unfavourable biases.

Section 6.2 discusses a potentially important feature of effective pheromone representations,

which may also serve to reduce some of the effects of bias, i.e., whether or not they allow

solutions to be represented more than once. Based on this discussion of the utility of the

unique representation of solutions, Section 6.3 presents an algorithm for the derivation

of an appropriate pheromone representation based on the characteristics of a problem’s

objective function.

115



6.1 Controlling Bias Using the Pheromone Update

Blum (2004) investigated two main ways to counteract undesirable bias effects in ACO

algorithms by altering the amount by which pheromone values are reinforced. The first is

to use the iteration best solution to update pheromone values, as is done in some ACS and

MMAS algorithms, rather than allow all ants to update solutions, as is the case in the

original AS. When applying this in an ACO algorithm for the JSP using PHsuc, Blum found

the algorithm performed better than using the AS update. However, its performance was

still not competitive with that of other pheromone representations. As described in the

previous chapter, this problem has an interesting structure that makes PHsuc particularly

susceptible to reinforcing poor solutions.

Blum also discusses the use of stochastic gradient ascent (SGA) (see, e.g., Bertsekas,

1999), noting the relationship between SGA and ACO identified by Meuleau and Dorigo

(2002). SGA is a technique for minimising error functions defined over a set of parameters.

For use in ACO, the error function is defined as the expected quality of solutions produced

given the current pheromone values associated with solution characteristics. While an

exact gradient technique would adjust pheromone values so that the likelihood of producing

improved solutions always increases, Blum notes that the exact technique requires complete

enumeration of the search space. SGA estimates the required change by sampling a number

of solutions at each iteration. The actual amount of change is governed by the learning

rate, which is a parameter of the approach.

The approach works as follows. At each iteration, the expected quality of solutions is

determined by probabilistically constructing a single solution using a modified component

selection rule that ensures certain conditions required by the SGA algorithm. Pheromone

values are then updated using a modified update rule in which the amount of update de-

pends on the learning rate and the current transition probabilities. Pheromone evaporation

is also adjusted by considering the current transition probabilities.1 It is also noted that

using the SGA update allows for greater freedom in the quality function used to assess the

relative merits of different solutions, which is a further merit of the technique.

Using this technique, Blum was able to improve the results of an ACO algorithm for

the k-cardinality tree problem, producing considerably improved results. The technique is

also applied to an ACO for the JSP using PHsuc, producing results comparable with the

best performing pheromone when using a standard ACO algorithm and PHrel. Despite the

improved performance achieved by using the SGA update, a number of disadvantages are

also identified. First, local search can only be applied to solutions after they have been

used to update pheromone values, while applying local search to improve solutions before

they are used to update pheromone is typically more effective. Second, it was found that

1See Blum (2004) for full details of the modifications to the standard ACO approach.
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the combined ACO-SGA technique is very sensitive to the chosen learning rate, which

depends on the problem instance being solved and the quality function used.

In conclusion, Blum recommends the use of a standard ACO pheromone update in

conjunction with an appropriate pheromone model. The latter is the topic of the remainder

of this chapter.

6.2 Unique Representation in Pheromone

When applying ACO to the TSP, an intuitive pheromone representation is C × C, where

C is the set of cities. This choice is seemingly a good one as it associates pheromone

with the solution feature that most directly contributes to cost, i.e., links, and indeed,

like many other intuitive pheromone choices, it works quite well in practice (Dorigo and

Stützle, 2002). Furthermore, this pheromone representation has an important feature.

Each distinct solution to the TSP is represented by exactly one set of links and so, in the

pheromone representation, by exactly one set of solution characteristics. (This is not the

case, for instance, when using a C × C pheromone for a subset problem, as illustrated in

Figure 6.1.) Hereafter, pheromone representations with this feature are said to have the

property of unique representation, expressed by Definition 6.

Definition 6 A pheromone representation C has the property of unique representation if

each solution is represented by exactly one set of solution characteristics taken from C. 2

Note that this definition corresponds with that of an identity-oriented pheromone rep-

resentation, defined in Chapter 4.

Lemma 4 An identity-oriented pheromone representation necessarily possesses the prop-

erty of unique representation. 2

Proof The defining characteristic of an identity-oriented pheromone representation, that

for each solution s, there is a unique set of solution characteristics drawn from C that

describes s, corresponds with Definition 6. �

There are two criteria for possessing this property. First, each distinct solution must be

represented at least once, as any excluded solution could be the optimal one. As pheromone

representations are derived from characteristics of the solutions or sequences used, which

will in any properly designed algorithm allow for any solution to be represented, this

criterion is generally trivially met. In some pheromones, distinct solutions may share the

same representation, as in Randall’s (2002b) ACO algorithm for the static aircraft landing

problem. While such pheromones do not exclude any solutions, the sharing of a single

representation by multiple solutions may be undesirable on problems where pheromone is

117



 a c f 
∅    
a    
c    
f    
 

a c f ∅ 

 a c f 
∅    
a    
c    
f    
 

a f c ∅ 

 a c f 
∅    
a    
c    
f    
 

c a f ∅ 

 a c f 
∅    
a    
c    
f    
 

c f a ∅ 

 a c f 
∅    
a    
c    
f    
 

f a c ∅ 

 a c f 
∅    
a    
c    
f    
 

f c a ∅ 

Figure 6.1: A small subset problem (in which the cost is associated with items) using
the C × C pheromone representation. All possible ant solutions are shown for the subset
{a, c, f} taken from some larger set. For simplicity, the pheromone matrices shown only
have entries for those items in this subset. ∅ is the artificial start point from which all ants
begin. Shaded cells indicate the solution characteristics (pheromone values) corresponding
to the adjacent solution. Crossed cells indicate infeasible solution characteristics.

shared between solutions of quite different quality. Such sharing of representations occurs

infrequently and is discussed below in Section 6.2.4.

The second criterion for unique representation is that each distinct solution must be

represented no more than once. If this latter criterion is not met, then ants could construct

the same solution while using different sets of solution characteristics (this is illustrated

for a subset problem in Figure 6.1). Moreover, pheromones that represent distinct solu-

tions multiple times consequently increase the size of solution space ants search in—even

though the same number of distinct solutions are present—which is clearly an undesirable

property for search algorithms. Thus, even if a problem has a representation bias, each

representation corresponds to the same set of solution characteristics. Notably, in the

GBAS, “. . . to each feasible solution, there corresponds (via Φ−1) at least one walk . . . [in

the construction graph]” (Gutjahr, 2000, p875). This means that the pheromone it uses,

which is associated with the links in these walks, is not guaranteed to have the property

of unique representation.

It should be noted that, with any pheromone representation, ants are able to construct

the same solution while encountering different sequences and, in some cases, slightly differ-

ent subsets of the solution characteristics that describe that solution. For instance, in the

TSP ants may construct the same solution while starting at different cities, thereby en-

countering a different sequence of solution characteristics (i.e., links) while never explicitly

encountering the link from the last back to the first city which may be explicitly visited

by other ants producing the same solution. With higher order pheromone representations,

ants may encounter different sets of higher order solution characteristics as the contents
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of their respective partial solutions will often be different even if those partial solutions

will eventually represent the same solution. Both cases are artefacts of the constructive

approach and are not inherently problematic as at each step ants are given the best avail-

able estimate of the learned utility of solution components. A problem arises when two or

more solution characteristics from a given pheromone representation correspond to a single

“true” solution characteristic in terms of a particular problem. For instance, using a C×P

pheromone representation for a subset problem means that the solution characteristics

(i, 1), . . . , (i, n) all represent the single solution characteristic “i is present in the solution.”

Yet with this representation only one of these is used in each ant’s solution, spreading

pheromone for the important solution characteristic across multiple values. Consequently,

each distinct solution also has multiple representations. Indeed, using C × P pheromone

for this problem, each solution of n items has n! different representations.

In general, where the solution structure imposed by the constructive process allows for

each solution to be represented only once, all alternative pheromones for that structure

will have the property of unique representation. Where the solution structure used does

allow for distinct solutions to be represented in different ways, pheromones based on how

solutions are represented will also represent distinct solutions more than once. Even when

alternative pheromones for a problem have the property of unique representation, it does

not follow that they will be equally effective, an issue discussed in Section 6.3.

The notion of unique representation is explored in the following sections and the influ-

ence of bias is discussed in Sections 6.2.1 and 6.4.

6.2.1 Unique Representation and Bias

Given that any identity-oriented pheromone representation will have the property of unique

representation, a pheromone with this property will be susceptible to the same biases as an

identity-oriented pheromone. Therefore, based on Lemmas 2 and 3 given in the preceding

chapter, a pheromone with this property applied to a problem with either a representation

or construction bias cannot be a CBS and will exhibit a bias due to those underlying

causes.

However, pheromone representations with the property of unique representation still

offer the advantage that each distinct solution is represented by one set of solution charac-

teristics and hence, has one learned value. Furthermore, as discussed in Section 6.3 below,

such pheromone representations should be the most appropriate models for different com-

binatorial problems.
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6.2.2 Unique Representation in Higher Order Pheromones

If a given first order pheromone representation has the uniqueness property for a partic-

ular problem, then any higher order representations generated from it will also have the

uniqueness property on the same problem. This is formalised in Theorem 3. This principle

holds for all nth order pheromone representations given solutions of at least n first order

solution characteristics, as solutions with less do not possess groups of the required size.

Theorem 3 Let C be an arbitrary first order pheromone representation. If C has the

property of unique representation for a given problem, then solutions represented by at

least n ≥ 2 different pheromone values are also uniquely represented by any higher order

representation Cn. 2

Proof Let C be an arbitrary first order pheromone representation such that C has the

property of unique representation. Let Cs ⊂ C be a set of solution characteristics from

C such that Cs corresponds to the solution s. Let Cn
s = {(i1, . . . , in)|i1, . . . , in ∈ Cs, i1 ≺

. . . ≺ in} be the set of all n-tuples of distinct elements from Cs, where ≺ is an arbitrary

but fixed order imposed on the elements of C. There is only one such set of n-tuples for

each Cs and n. From Definition 3 it can be seen that Cn
s ⊂ Cn. Therefore, each solution

has exactly one representation in Cn. Based on Definition 6, Cn has the property of unique

representation. �

Corollary 1 Let C be an arbitrary first order pheromone representation such that C does

not have the property of unique representation for a given problem. Provided that solutions

are represented by at least n different pheromone values in C, any higher order represen-

tation Cn also does not possess the property of unique representation for that problem. 2

Proof Let C be an arbitrary first order pheromone representation such that C does not

uniquely represent solutions. Choose two sets of solution characteristics Cs, C
′
s ⊂ C, Cs 6=

C ′
s such that both sets correspond to the same distinct solution s. It follows that there

are two sets of higher order solution characteristics Cn
s , C ′n

s ⊂ Cn, Cn
s 6= C ′n

s , such that Cn
s

corresponds to Cs and C ′n
s corresponds to C ′

s. Hence, there are at least two representations

of s in each higher order representation Cn, so none of them possess the property of unique

representation. �

6.2.3 Examples of Unique and Multiple Representation

This section examines alternative pheromone representations for three major COPs to

illustrate the importance of the property of unique representation. Note that in each case

those pheromone representations without this property are representation-oriented (see
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Section 4.1.1) because in these problems many distinct sequences may map to a single

solution.

Subset Problems (cost associated with items)

Consider a subset problem, such as the MKP, SCP, SPP or KCTP, where cost or profit

is associated with the items included in the subset. The first three examples have a

representation bias as solutions may be of varying length, while the KCTP requires subsets

of a fixed size and hence all solutions are represented the same number of times. All four

example problems and most other difficult subset problems have a construction bias and so

there does not exist a pheromone representation that can be free from bias. Intuitively, such

problems should have a C pheromone representation, as the items placed in the subset are

important solution characteristics. Indeed, a C× C pheromone representation is regarded

as inappropriate for these problems (Leguizamón and Michalewicz, 1999). Nevertheless, it

makes an interesting case study in the analysis of pheromone representations that represent

solutions multiple times.

When applying a C × C pheromone representation to these problems, a solution char-

acteristic (ci, cj) represents choosing one item cj after choosing some other item ci. It is

derived from the graph representation of a subset, where the nodes visited are the items

included in the subset and pheromone is associated with the links in that graph. If solu-

tions are represented in this way, with an artificial start node (an item with zero weight

and cost) from which all ants begin, each solution of k items is represented k! times, with

the pheromone associated with including a given item spread over n separate values, where

n is the total number of items (excluding the start node), k < n. Figure 6.1 illustrates the

use of this pheromone representation for a simple subset problem. As described above, a

C× P pheromone creates the same number of extra representations for solutions to these

problems.

The intuitive pheromone choice C satisfies the requirements of unique representation as

any solution may be represented yet each solution is represented by at most one subset of

solution characteristics.

Graph Colouring Problem

In the GCP, although solution components represent the assignment of specific colours to

nodes, distinct solutions are described by the groups of like-coloured nodes. That is, specific

colour information is discarded. Thus, for a given k-colouring of a graph, there are k!− 1

other colourings that represent the same solution, produced by swapping the actual colours

between colour groups. Clearly then, any pheromone representation that includes specific

colour information may represent distinct solutions multiple times. This is the case if using

121



a Cit×Cres pheromone, where Cit is the set of nodes and Cres is the set of colours. Each of

the k!−1 alternative representations of each distinct solution has a different corresponding

set of solution characteristics (i.e., representation) in the pheromone. Furthermore, such a

pheromone may mislead ants by attracting them to make node–colour assignments that,

being characteristics of two different representations of the same distinct solution, produce

a poorer solution when combined.

Similar problems occur if either of the second order representations Sp×Cit×Cres; (Cit×
Cres)

2 or Sp × Cit × Cres; C
2
it × Cres is used. The former stores pheromone between all

pairs of node–colour assignments while the latter only stores pheromone for like coloured

pairs of nodes. While these representations capture interdependencies between adjacent

nodes so that poor combinations of node–colour assignments are less likely, each solution

is still represented multiple times. For instance, consider the solution characteristic (i, j, k)

taken from the latter pheromone, which is equivalent to (i, j, k′) if the colours k and k′

are swapped. As described in Section 4.1, these representations may be simplified by

discarding specific colour information to produce a grouping pheromone for this problem.

A Sp × Cit × Cres; C
2
it (same group) pheromone, applied to this problem, does have the

property of unique representation, as it directly models colour groups.

If this problem is modelled such that the number of colour conflicts is minimised when

using a fixed number of colours, then it is free from both representation and construction

biases and hence all the pheromone representations described are CBSs. However, if the

problem is modelled with the aim of minimising the number of colours required to create

a feasible solution, then this may not be the case.

Permutation Scheduling Problems

As described in preceding chapters, ACO algorithms for problems such as the SMTTP, FSP,

JSP, GSP and OSP have employed a number of different pheromone representations. Early

ACO algorithms (e.g., Colorni et al., 1994) used a TSP-like C×C pheromone representation

(where C is the set of operations), which has the minor disadvantage that an artificial start

node representing an empty schedule must be used in order to learn which operation to

place first. More recent algorithms have largely used a C× P pheromone, as this appears

better suited to modelling permutations. Both of these are representation-oriented and

so learn about permutations rather than precedence relationships between operations. As

problems such as the JSP, GSP and OSP have a representation bias, representation-oriented

pheromones will accordingly represent some solutions multiple times.

Consider the application of a C × C pheromone to the trivial scheduling problem de-

picted in Figure 6.2. In this example, the completion time of o3 may be affected by the

completion time of o1 (and vice versa), while o2 is independent of o1 and o3. As a result,
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Figure 6.2: A small OSP-style permutation scheduling problem using the C×C pheromone
representation. The artificial start point 〈〉 is not shown for brevity. a) o1 and o3 must be
processed on the same machine, while o2 requires a different machine. b) An ant’s solution,
the schedule it represents and the solution characteristics used. c) Another ant’s solution,
producing the same schedule but using different solution characteristics.

the operation sequence 〈o1, o2, o3〉 is equivalent to 〈o1, o3, o2〉, even though different solu-

tion characteristics from C × C are involved in each. As described by Blum and Sampels

(2002a), and in Section 5.2, empirical investigation of the C×C pheromone representation

reveals it has an unfavourable bias such that in more constrained scheduling problems like

the JSP, poorer solutions could be reinforced more than better solutions.

The Sp × C; C2 (related succeeding) pheromone, developed by Blum and Sampels

(2002a) for the GSP, models identifying characteristics of solutions and not of the se-

quences of operations that represent solutions. Consequently it has the property of unique

representation. As reported by Blum and Sampels (2002a) and supported by the empiricial

investigation described in Section 5.2, it outperforms the other commonly used pheromone

representations for these problems, including C× P with summation evaluation.

6.2.4 Shared Representations in Pheromone

When a single set of solution characteristics corresponds to two or more distinct solu-

tions, those solutions may be said to share a representation. In effect, it is the reverse

of having multiple representations.2 However, examination of a wide range of pheromone

representation–problem combinations suggests that it is far less common for multiple solu-

tions to share one representation than for a single solution to have multiple representations.

2While it would be possible to contrive a pheromone representation that exhibits multiple, shared
representations, it is improbable that such pheromones would be developed in the normal course of applying
ACO, so such pheromone representations not considered further.
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Furthermore, sharing of representations is not necessarily undesirable.

It is possible to contrive unnatural pheromone representations for a variety of problems

that exhibit shared representations. For instance, consider a pheromone representation for

a subset problem that arbitrarily groups items into pairs with a single pheromone value to

indicate if either item in each pair should be included in solutions. Such a representation

would make use of a set of virtual components C′, where C 7→ C′ and |C′| = |C|/2. Similar

pheromone representations may be contrived for other problems by having small groups

of solution components where each group has a single pheromone value. Clearly, such

representations are inappropriate as they fail to distinguish between different solutions.

However, these examples are highly artificial and unlikely to eventuate in the typical ap-

plication of ACO. Of more interest is the small number of pheromone representations with

this property which can appear as a result of plausible design decisions. Two of these are

considered here.

Pheromone for the Direct Assignment of Times in Scheduling Problems

Randall’s (2002b) ACO algorithm for the static single runway aircraft landing problem

uses the pheromone representation Cit × Cres; Cit × C′res, where Cit is the set of planes,

Cres is the set of landing times and C′res is the set of time regions to which k groups of n
k

contiguous timeslots from Cres are mapped, where n is the number of timeslots available

for a particular plane. Aggregating regions of timeslots means that assignments within any

given region increase the respective probabilities of all timeslots in that region. Clearly,

this sharing of representations in a pheromone model is made possible by the nature of the

resources (i.e., timeslots) in this problem. Unlike assignment problems such as the GAP

and QAP, where resources are clearly distinct entities, the differences between timeslots

are gradual, with nearby times similar in terms of solution cost.

While Randall adopts this approach to deal with planes’ often disparate time windows,

it may also be advantageous in terms of the ACO algorithm’s ability to learn about good

solutions. Given there is generally little change in solution cost between assignments to

adjacent resources, associating pheromone with individual resources may make it more

difficult for the system to learn which resources are good, as an item would have to be

assigned the same resource several times before any impact on ant behaviour is observed.

To ensure that the best time is chosen, a local search procedure or subdivision of regions

could be performed.

Thus, for the single runway aircraft landing problem, modelled as the assignment of

timeslots to planes, using a pheromone that shares representations may be a good practical

choice.
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Car Sequencing Problem

The car sequencing problem is a common problem in the car manufacturing industry

(Smith, Palaniswami and Krishnamoorthy, 1996). The aim of the variant considered here

is that cars of different models are placed in a production sequence such that the separation

penalty between cars of the same model is minimised.3 Each model has a fixed number of

cars. One way this can be modelled is as the allocation of sequence positions to different

models of cars.4 This shares similarities with graph colouring, in that solution cost relates

to pairs of items (i.e., sequence positions) assigned to each group (i.e., model), yet it also

has features of a typical assignment problem, in that the separation penalty depends on

what model a sequence position is assigned to. A pheromone representation that models

both of these aspects is developed in Section 6.3.1. However, in order to illustrate potential

problems with shared solution representations, only a pheromone for the graph colouring

aspect is considered here. A Sp × Cit × Cres; C
2
it (same model) pheromone captures how

separation penalties are allocated within models. However, while each solution is repre-

sented no more than once in this pheromone, several solutions share their representation

with other solutions. This is because, unlike graph colouring, the groups in this problem

have separate identities, evidenced by the different penalties associated with each model.

This pheromone representation is therefore inappropriate as highly different solutions may

be represented by the same set of solution characteristics.

Whether or not to share pheromone representations between different solutions seems

to be a practical consideration based on the problem in question. The pheromone selec-

tion system described in Section 6.3 does not currently support pheromones that share

representations between solutions.

6.3 Systematically Determining Appropriate Phero-

mone Representations

The previous section described the property of unique representation and suggested why

it is a desirable property of a pheromone representation. However, in order to devise a

system to determine the most appropriate pheromone representation for a problem it is

first necessary to consider whether unique representation is sufficient to produce a good

3As described in Section 2.4.5, the car sequencing problem may also be modelled as a constraint
satisfaction problem, where each station on a production line can support a limited number of cars of
the same model in sequence, as in Gottlieb et al. (2003).

4In this way the problem is transformed into a GAP instance in which the capacity of each resource
(i.e., car model) is the same as the number of cars of that model, and the capacity utilisation for each
item (i.e., sequence position) is always 1. Consequently, unlike most GAP instances, there are no infeasible
partial solutions.
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model of solutions. The following examples consider other factors that may influence the

decision of which pheromone representation to use.

A pheromone representation that uniquely represents solutions may not adequately

describe solution characteristics that affect solution cost. Consider a subset problem char-

acterised by an objective function where cost is related to some relationship between the

pairs of items in the subset, with an objective function of the form
∑

i

∑
j 6=i f(s[i], s[j]). The

MCP and N -queens problem (NQP) can be formulated in this way. While a C pheromone

representation has the property of unique representation, the objective function suggests

that the impact of including one item in the subset is related to all other items in the

subset, which is modelled by the second order pheromone representation Sp × C; C2 (co-

present). This last pheromone representation is used by Fenet and Solnon (2003) in their

ACO algorithm for the MCP.

Socha et al.’s (2002) comparative study of two pheromone representations for the UCTP,

the first a standard assignment pheromone (Cit×Cres) and the second a grouping pheromone

(Sp×Cit×Cres; C
2
it (same group)), found that the first produced better results. While the

latter was considered to be more appropriate for timetabling, it may not have been the

most appropriate for this particular timetabling problem. A requirement of their algorithm

was that only feasible solutions be produced, so this problem is not a classic timetabling

problem in which clashes must be minimised. The objective instead was to minimise the

number of soft constraint violations, which included a student having a class in the last

timeslot of the day, more than two classes in a row, or exactly one class on a day. These soft

constraints relate more strongly to the actual times assigned to particular events, which is

modelled by the Cit × Cres pheromone.

Blum and Sampels’ (2002a) comparative study of four pheromone representations for

the GSP showed that the best performing pheromone modelled those characteristics of

solutions that directly affect solution cost. Although this pheromone performs very well

due to an advantageous bias (see Section 5.2), it would still model solution characteristics

that directly affect cost given an alternative solution construction mechanism that might

be less susceptible to bias.

These examples reveal a more general principle concerning problems and the most

appropriate choice of pheromone. While multiple solution representations are undesirable,

they are actually indications that a pheromone representation fails to adequately model

those features of solutions that directly affect solution cost. Ants construct solutions from

a set of solution components independent of the pheromone representation. Depending on

the problem, each distinct solution may be described by different sets or arrangements of

solution components. This is the case in the GCP, where solution components represent

node–colour assignments while solutions are only uniquely described in terms of colour
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groups. Consider an alternative solution representation based on how various parts of the

solution (i.e., solution components or parts of solution components) directly affect solution

cost. In effect, this involves defining the decision variables of the problem such that a change

in the value of any of them results in a change in the solution represented and hence the

cost.5 As such a set of decision variables ignores how solutions are represented (except

where this has an impact on solution cost) it follows that it represents solutions exactly

once. In order to adequately model those features of solutions that directly affect solution

cost and hence produce a pheromone representation that uniquely represents solutions,

solution characteristics must be chosen such that the decision variables they define have

this property.

One way to account for a solution component’s impact on cost would be to associate

pheromone with the edges of the state graph. The state graph represents all possible

partial solution states. This way, all previous construction decisions are taken into account

before considering whether to include a particular solution component. However, such a

representation will, for many problems, represent solutions multiple times. Moreover, state

graphs for even small problems can be prohibitively large to describe explicitly.

A more feasible approach is to use a pheromone representation such that the solution

characteristics it models are those directly related to solution cost. The task of identifying

an appropriate pheromone representation then becomes that of identifying how each so-

lution component (on its own or in combination with other solution components) directly

affects solution cost. Consideration is restricted to those interactions that directly affect

solution cost, because to account for all indirect mechanisms through which a solution

component may affect solution cost would require complete knowledge of a problem and

is therefore infeasible. Considering those interactions that have an identifiable direct im-

pact on solution cost is a practical alternative. This information can be derived from a

problem’s objective function, or in some cases its objective function and some constraints.

Thus, ACO algorithms that have successfully used an intuitive pheromone choice have

implicitly been using information contained in the objective function, even though this is

rarely recognised. As a first step, only those problems where the objective function alone

describes how solution components directly impact on cost are considered.

The objective function for many common COPs consists of a summation over a number

of terms. Each of these terms may be considered as a solution characteristic. The problem

of deriving an appropriate pheromone representation then becomes that of identifying the

nature of these terms. To facilitate this task, a suitable modelling language must be used

5It is conceivable using such a representation that two apparently different solutions may have the
same objective cost. However, unless they can be shown to be completely equivalent, taking into account
factors other than their cost, they should be considered to be separate. For instance, two solutions to the
TSP may have the same tour length despite visiting cities in different orders, and would be considered as
independent solutions.
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that helps reveal how different parts of the solution relate to each other. Hence, a 0-

1 integer linear programming formulation would be inappropriate as the true nature of

a problem is often difficult to discern given the numerous 0-1 variables and constraints

involved. In the following examples, problems have been modelled as sequences of solution

components.

The following case study helps to illustrate some of the issues involved in selecting an

appropriate pheromone representation.

6.3.1 Case Study: Car Sequencing Problem

Consider the following objective function for the car sequencing problem (CSeqP).

Minimise
M∑
i=1

|D(i)|−1∑
j=1

|D(i)|∑
k=j+1

P
(
|A(i, k)− A(i, j)|, i

)
(6.1)

where D(i) = {j ∈ Cit | k ∈ [1, N ], s[k] = i, j = I(k)} is the set of sequence positions

assigned to model i, where k is an integer, s[k] ∈ Cres = {1, . . . ,M} is the model assigned

to sequence position I(k) and I(k) is the ith sequence position to be assigned during

construction, A(i, j) ∈ D(i) is the jth sequence position assigned to model i, P (i, j) is the

separation penalty for the jth model separated by i places in the sequence, N is the number

of cars and M is the number of models.

Note that this model differs from others used with ACO, such as Gottlieb et al. (2003)

and Solnon (2000). In both ACO algorithms, which were for a constraint satisfaction

variant of the CSeqP, solutions are permutations of cars of different models and so a

Cres × Cres pheromone is used, where Cres is the set of car models. The formulation of the

problem presented here has been used successfully by Randall (1999) on this variant of the

problem.

Given this formulation, this problem has no representation bias as each set of assign-

ments describes a different solution. However, it does have a construction bias because

there are a limited number of cars of each model. As each model’s set of cars becomes

empty during solution construction, which will occur at different points in the construction

tree depending on which assignments have been made earlier, the number of alternatives

diminishes, creating imbalances in the construction tree. Consequently, pheromone repre-

sentations for this problem cannot be CBSs.

Given this formulation of the problem it can be difficult to determine an appropriate

pheromone representation. Initial analysis of the objective function suggests that solution

cost is related to two things: which group (model) a position is assigned to and which

pairs of positions are assigned to the same group. These suggest two separate pheromone
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representations. Regarding the first, a Cit × Cres pheromone appears most appropriate,

where Cit is the set of sequence positions and Cres is the set of models. Given that each

solution is completely described by stating which positions cars of a particular model are

in, this representation has the property of unique representation. However, it does not

capture all aspects of the objective. In Section 6.2.4, a Sp × Cit × Cres; (Cit)
2 pheromone

was considered, as this captures the fact that separation penalties are allocated within

models (groups). However, this representation is inappropriate on its own as potentially

very different solutions may be represented by the same set of solution characteristics.

Clearly, neither of these representations is completely adequate to capture how each part

of the solution directly affects solution cost. However, given that a Cit × Cres does have

the property of unique representation, it is worth considering if a second-order pheromone

will suffice.

The second-order pheromone Sp×Cit×Cres; (Cit×Cres)
2 (same group) associates phero-

mone with pairs of position–model assignments. Based on Theorem 3, this representation

also has the property of unique representation. It also correctly captures the two aspects

of solution cost in this problem: cost due to assignments is represented by the underlying

Cit×Cres pheromone, while cost related to pairs of sequence positions in the same group is

also represented. However, given that the pheromone is to be used to relate only pairs of

sequence positions assigned the same model, it can be simplified to Sp×Cit×Cres; C
2
it×Cres.

One concern when using higher-order representations is their potential size. Given moder-

ate sized problems involving solution characteristics from Cit × Cres, and |Cit| ≈ |Cres|, the

storage overhead for a higher-order pheromone representation can become prohibitively

large. Thus, provided the number of models in a CSeqP instance is not too large, then

the use of a second-order pheromone for the CSeqP is feasible. As an example, the largest

problem considered by Randall and Montgomery (2002) consists of 80 cars divided into 4

models, equivalent to a 227 city TSP in terms of pheromone size.

6.3.2 A Decision Algorithm for Pheromone Selection

The algorithm for selecting pheromone representations requires that the problem model

has already been parsed and that the nature of entities (i.e., components) added at each

step is known, even though their impact on solution cost is not. Hence, the algorithm

identifies the nature of the solution components or characteristics in the problem. The

algorithm has been developed by studying a wide range of commonly occurring COPs to

identify recurring themes in the objective function and what these indicate about cost

contributors. This is not the only possible algorithm for this task, but appears well suited

to those problems examined. The algorithm follows a decision tree (see Figure 6.3) that

uses the four questions outlined below. For each question, the possible answers are given,
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followed by an explanation of the reason for the question.

Note that f(1) represents a function of one part of the solution while Σ represents

an aggregate of many parts of the solution. For example, the SMTTP has an objective

in which each operation’s contribution to solution cost is related to
∑i

j=1 p(s[j])− d(s[i]),

where s[i] is the ith operation in the permutation, and p(k) and d(k) represent the processing

time and due date of operation k respectively. This corresponds to f(Σ, 1). The number

partitioning problem (NPP) (Johnson, Aragon, McGeoch and Schevon, 1991) has a single

term of the form
∑

i A(1, i)−
∑

i A(2, i), where A(i, j) is the jth number in partition i, which

matches f(Σ, Σ). The algorithm is currently limited to objective functions consisting of no

more than two parts. However, a generalised optimisation system developed by Randall

and Abramson (2001) makes use of objective function templates (described in Randall

(2003b)) in which no more than two parts of a solution are referenced in the objective.

Given the wide range of COPs to which that system could be applied, this limit is likely

to be sufficient for many of the problems to which ACO is applied.

1. How many parts of the solution are used in each term in the objective?

Possible answers: f(1), f(1, 1), f(Σ, 1), f(Σ, Σ).

Rationale: To know if cost is related to individual parts of the solution or to some

relationship between parts. f(1) restricts the number of feasible pheromone repre-

sentations while the others require further examination.

2. If each part is related to another part of the solution, how many other parts is it

related to?

Possible answers: one, selected (and more than one), all

Rationale: To determine the scope of the relationship(s) between parts. The answer

one restricts the number of feasible pheromone representations while the other two

require further examination. Selected indicates that each part is related to some of

the other parts, but not all. For instance, in the JSP the contribution to solution cost

of a single operation is related to which other operations that use the same machine

have been scheduled before it, which is a subset of all operations since JSPs typically

involve multiple machines. In the SMTTP an operation’s contribution to solution

cost is related to all operations that precede it, but none that succeed it, which also

matches the answer selected.

3. If each part is related to a selected group of other parts, what identifies them?

Possible answers: all preceding/succeeding, related preceding/succeeding, assigned

same group/resource, assigned different group/resource.

Rationale: To differentiate between problems where the relative order of compo-

nents is important (first two answers) and those where group assignment is important
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Figure 6.3: Decision tree for selection of pheromone representations. Nodes correspond to
the questions outlined in the text. Nodes representing question 4 have been additionally
labelled by the letters a through e to assist in following the example applications of the
algorithm given in the text.

(second two answers). In an implementation of the system, the two answers corre-

sponding to each kind of relationship (ordered versus group assignment) would be

used to make minor changes to which parts of the pheromone representation would be

used in decisions and updated by solutions. For instance, the SMTTP would match

all succeeding while the JSP would match related succeeding.

4. If the part referenced represents an assignment, is the resource assigned used sepa-

rately in the objective function?

Possible answers: yes, no (or solution component is not an assignment).

Rationale: If solution components represent assignments and each term in the ob-

jective is some function of both the item and the resource to which it is assigned, then

it is likely that it is the assignment that is most important, rather than any other rela-

tionship(s) in the problem. The exception to this rule is when dealing with a problem

in which group membership is important as well as which group items are assigned

to, in which case both aspects must be reflected in the pheromone representation.

A simple decision tree is depicted in Figure 6.3. Note that Question 4 appears at the end

of most branches and in all but one case overrides any other characteristics of the problem.

This is because if the objective is, at some level, a function of individual assignments, then

associating pheromone with these will ensure that the representation has the property of

unique representation while still representing an important contributor to solution cost.

To illustrate how the algorithm may be applied, consider the following four problems.
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Objective functions have been simplified by removing the bounds on summations.

TSP Objective:
∑

i d(s[i], s[predecessor(i)]), where s[i] is the ith city in the solution s,

d(i, j) is the distance between cities i and j, and predecessor(i) returns the preceding

position to i, which is the last position in the solution if i is the first solution position,

i− 1 otherwise.

• Question 1: f(1, 1), goto Question 2;

• Question 2: one, goto Question 4b;

• Question 4b: no, select C× C (adjacent pairs) pheromone.

QAP Objective:
∑

i

∑
j f
(
I(i), I(j)

)
· d(s[i], s[j]), where I(i) is the ith facility assigned,

s[i] is the location assigned to facility I(i), f(i, j) is the flow between facilities i and

j, and d(k, l) is the distance between locations k and l.

• Question 1: f(1, 1), goto Question 2;

• Question 2: all, goto Question 4c;

• Question 4c: yes, select Cit × Cres pheromone.

GAP Objective:
∑N

i=1 C
(
I(i), s[i]

)
, where I(i) is the ith task assigned, s[i] is the agent

assigned to task I(i), and C(k, l) is the cost of assigning task k to agent l.

• Question 1: f(1), goto Question 4a;

• Question 4a: yes, select Cit × Cres pheromone.

CSeqP A description of this problem appears in Section 6.2.4. In this formulation, se-

quence positions are allocated to a fixed number of cars within each model.

Objective:
∑

i

∑
j

∑
k P
(
|A(i, k)−A(i, j)|, i

)
, where A(i, j) is the jth sequence posi-

tion assigned to model i, and P (i, j) is the penalty for cars of model j separated by

i positions.

• Question 1: f(1, 1), goto Question 2;

• Question 2: selected, goto Question 3;

• Question 3: same group, goto Question 4e;

• Question 4e: yes, select Sp × Cit × Cres; C
2
it × Cres pheromone.

Note that in addition to the decision tree, an implementation of the system must

perform some other processing to slightly tailor the chosen pheromone representation to

match a particular problem. For instance, with the TSP, the system must be able to

recognise that the predecessor() function relates adjacent pairs, rather than pairs separated
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by some other distance. In problems such as the JSP, the system must be able to determine

which other operations are capable of affecting each operation’s start time, information

obtainable from the problem constraints and objective.

The results from applying the algorithm to a range of COPs are presented in Table 6.1.

With the exception of the SMTTP, the suggested pheromone representation is the best

known pheromone for each problem to which ACO has been applied in the literature.

The suggested pheromone for the SMTTP has not been used with that problem so no

comparison can be made.

6.4 Potential to Counteract Bias

Given a problem with no constructed solution biases, any pheromone representation that

may be applied to that problem will both represent solutions uniquely and be a CBS.

However, it does not follow that every applicable pheromone representation will produce

equivalent performance. The review of the ACO literature presented in this thesis supports

the claim that modelling solution characteristics that are related to solution cost or value

leads to the best results with such problems.

If a problem has a constructed solution bias, then under all practical conditions there

does not exist a pheromone representation that will be free from bias. Specifically, if a

problem has a construction bias then there does not exist a pheromone representation that

is a CBS, and thus a pheromone that represents solutions uniquely will not be free from bias.

Furthermore, given what is currently known about pheromone representations with this

property, the use of such a pheromone does not entail a reduction in bias. For example,

the Sp × C; C2 (related succeeding) pheromone used with the JSP represents solutions

uniquely and exhibits a strong bias. Fortunately, given the commonality in structure of

many JSP instances, this bias typically favours good solutions. However, Blum (2004)

describes contrived instances where it performs very badly.

If the nature of the bias in a pheromone representation is unknown or cannot be deter-

mined using available analysis techniques, then modelling solution characteristics related

to cost offers the following advantages over representation-oriented alternatives. First, as

solutions are represented uniquely, the algorithm will learn only one estimate of a solu-

tion’s quality. Second, there is a clear relationship between the solution characteristics

modelled and the impact of their inclusion on solution cost. Both of these suggest that

such pheromone representations should learn more effectively which solution characteristics

to combine to produce good solutions.

If the nature of the biases in a collection of alternative pheromone representations is

known, then this knowledge may be used to select the one with the most favourable bias,
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even if it does not have the property of unique representation. Thus, it is by considering the

existence and, subsequently, nature of biases in pheromone representations that informed

decisions concerning the most appropriate pheromone representation may be made.

6.5 Summary

Pheromone representations are generally chosen in an ad hoc manner, which has in some

instances produced representations that represent solutions multiple times. This increases

the effective size of the search space and may potentially mislead the search process as to

the true learned value of solutions. In contrast, pheromone representations that represent

each solution exactly once may learn more effectively.

Many intuitive pheromone choices have been highly effective in a number of instances,

suggesting that deriving pheromone by the systematic analysis of a problem, especially its

objective function, may yield improved results. Moreover, deriving a pheromone repre-

sentation in this way ensures solutions are represented uniquely, while directing learning

on those characteristics of solutions that most directly contribute to cost. Given that no

pheromone for a problem with a construction bias can be a CBS, such pheromone rep-

resentations will not be free from bias, yet may counteract some of the effects of bias by

supporting more effective learning.

An initial system has been proposed for the selection of pheromone representations that

may be applied to a wide range of COPs. In general, this system’s predictions correlate with

the best-known pheromone representations for problems described in the ACO literature.

The next chapter presents the results of empirical investigations into alternative pheromone

representations for a number of key problems and compares the results achieved using the

system’s suggested pheromone against available alternatives for each problem.
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Chapter 7

Pheromone Representation and

Assignment Order Comparative

Performance

This chapter compares the performance of ACO using alternative pheromone representa-

tions for six COPs: the TSP, MKP, GSP, QAP, GAP and CSeqP. The effectiveness of

different assignment orders in ACO algorithms for the GAP is also studied. Section 7.1

describes the methodology of the experiments and statistical analyses, while Section 7.2

summarises the analysis results obtained.

7.1 Methodology

Preceding chapters have described the potential for bias in constructive algorithms such

as ACO and how this may impact on the performance of different pheromone representa-

tions. In particular, Chapter 6 predicts that an appropriate pheromone representation for

a problem is one that models solution characteristics that are directly related to solution

cost (or value). Given that an underlying construction bias necessarily produces a bias

in any pheromone representation used with the problem in question, such pheromone rep-

resentations will not be free of bias, yet may still offer advantages over alternatives that

indirectly model key solution characteristics. The purpose of the investigations described

in this chapter is twofold: to test the predictions made in the previous chapter concerning

the most appropriate pheromone representation by comparing the relative performance of

alternatives; and to examine the performance of different assignment orders in the GAP

and identify any impact on pheromone performance. Given that these aims relate to the

relative performance of alternative pheromone representations or assignment orders given

otherwise identical ACO algorithms, comparisons are not made between the performance
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Table 7.1: Problems and pheromone representations studied.
Applicable pheromone

Problem Entities Solution form representations
TSP set of cities C permutation of c ∈ C C× C

C× P

MKP set of items C sequence of c ∈ C C

Sp × C;C2 (copresent)
C× C

C× P

GSP set of operations C permutation of c ∈ C C× C

C× P
Sp × C;C2 (related succeeding)

QAP set of facilities Cit, sequence of c ∈ Cres Cit × Cres

set of locations Cres Cres × Cres

GAP set of tasks Cit, sequence of c ∈ Cres Cit × Cres

set of agents Cres Cres × Cres

CSeqP set of sequence sequence of c ∈ Cres Cres × Cres

positions Cit, Cit × Cres

set of models Cres Sp × Cit × Cres;C2
it (same model)

Sp × Cit × Cres;C2
it × Cres

of the algorithms described here and those described in the literature.

7.1.1 Problems and Pheromone Representations

Six types of COP were studied, the TSP, MKP, GSP (including JSP and OSP instances),

QAP, GAP and CSeqP. These problems were chosen as they are well-studied in the liter-

ature, exhibit a range of constructed solution biases and are amenable to solution using a

range of different pheromone representations. The QAP, GAP and CSeqP also offer the

opportunity to study the effects of different assignment orders on ACO algorithm perfor-

mance. Table 7.1 describes the key characteristics of the COPs studied and the pheromone

representations that were used with each. Note that solution form describes the structure

of solutions as constructed by an ACO algorithm and so implicitly identifies the solution

components from which they are built. The terms permutation and sequence are used to

distinguish between solutions where all solution components must appear exactly once (and

where their order is significant) and solutions where this is not the case respectively. With

the exception of the algorithms for the TSP, where the initial city is selected randomly,

ants start with empty solutions in all algorithms.

Results for each problem are presented in separate sections, with a description of the

instances studied given first, followed by a summary of the analyses performed. Sum-

maries of the actual costs/values of solutions produced for each problem are presented in
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Appendix D.

7.1.2 Implementation of ACO Algorithms for Studied COPs

In order that differences in the relative performance of alternative pheromones be estab-

lished independently of the precise way in which pheromone information is updated, two

alternative ACO algorithms were implemented: a modified version of ACS and a standard

MMAS. Initial testing suggested that the greedy bias of ACS, controlled by the q0 pa-

rameter, often leads to inferior performance than when it is not used. Consequently, this

parameter was set to zero in all ACS experiments.

Table 7.2 summarises the parameter values used by the ACO algorithms. Note that

the relative influence of heuristic information, controlled by β, was set to different values

depending on the problem. These values are summarised in Table 7.3.

Across all the algorithms, the iteration best solution was used to update pheromone.

The parameter Q, which controls the amount by which pheromone values are updated,

is used only with the TSP, GSP, QAP and CSeqP, which are minimisation problems. As

it is typical that Q = 1 in MMAS, equations for selecting τmin and τmax were adjusted

accordingly. Due to the wide range of costs of solutions to the QAP instances studied the

value of Q was set differently for each QAP instance, according to

Q =
Cmax

1000
(7.1)

where Cmax = amax · bmax is a weak upper bound on solution cost where amax and bmax are

the maximum flow and distance respectively. This results in changes to pheromone values

comparable to those in the ACO algorithms for the other problems.

In the two maximisation problems the amount by which pheromone is increased is

proportional to V
Vmax

, where V is the value of the solution and Vmax is a weak upper bound

on the maximum solution value. For the MKP, Vmax is given by the sum of all items’

profits, while for the GAP it is given by n ·Cmax, where n is the number of items and Cmax

the maximum profit from any single assignment.

Algorithms for the TSP, MKP, GSP and GAP were implemented with the capability to

use heuristic information. The details and purpose of this information are summarised in

Table 7.4. Heuristic information is often related to the change in solution cost (or value)

associated with adding a particular solution characteristic. As this is computationally

expensive to calculate for the QAP and CSeqP it was not used with those problems.

Furthermore, a number of ACO algorithms for the QAP have not used heuristic information

(e.g., Stützle, 1997; Taillard and Gambardella, 1997).

Algorithms for the TSP and QAP were implemented with the capability to apply a
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Table 7.2: Parameter values used in ACO algorithm implementations.
ACO algorithm Parameter Controls Value
Common iterations 3000

m number of ants 10
Q reinforcement amount 100
γ global pheromone decay 0.1

ACS τ0 initial pheromone level 0.01
q0 greedy choice probability 0
ρ local pheromone decay 0.015

MMAS pbest τmin 0.05

Table 7.3: Values of β used with each problem where heuristic information used.
Problem β

TSP -2
MKP 2
GSP -1
GAP -1

Table 7.4: Heuristic information used by ACO and ACOundir algorithms and the charac-
teristics it favours.

Problem Heuristic measure Favours
TSP distance between cities short distance
MKP item profit high profit
GSP operation processing time low processing time
GAP agent capacity consumed by assignment low capacity utilisation
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local search procedure to solutions produced. The local search procedure for the TSP

works as follows. Every solution obtainable by inverting sections (of lengths between 2

and n − 1) of the original solution is examined and the best solution used to replace

the original. This process is repeated until a local optimum is found. The local search

procedure used with the QAP works as follows. Every solution obtainable by swapping

single pairs of assignments is examined and the best solution used to replace the original.

As with the TSP, this process is repeated until a local optimum is found. Both procedures

are consequently very powerful, but also computationally very costly and hence were only

used with TSP instances up to size 100 and QAP instances up to size 35.

In addition to ACS and MMAS ACO algorithms, otherwise equivalent implemen-

tations of ACOundir and ACOheur (i.e., ACOundir biased by heuristic information) were

examined for each problem.

All ACO algorithms were implemented in the C language and experiments were exe-

cuted on a 2.6GHz Pentium 4 with 512Mb of RAM, running Red Hat Linux 8.0.

7.1.3 Variables and Analysis Techniques Used

Each combination of pheromone representation (including no pheromone, ACOundir), as-

signment order (where supported), and the use or not of heuristic information or local

search (where supported) was tested across 10 random seeds. The output from each exper-

iment is a frequency distribution of the costs (or values) of solutions produced during the

algorithm’s run, expressed as the relative percentage deviation (RPD) from the optimal

solution cost or value. RPD is calculated according to

RPD =
|C − Cbest|

Cbest

(7.2)

where C is the solution’s cost/value and Cbest is the optimal (or best known) solution

cost/value for the problem in question. Treating solutions’ costs/values in this way allows

minimisation and maximisation problems to be analysed uniformly and for results from

different instances of the same problem type of problem to be combined. As the cost/value

distributions from each run are non-normal, the data were summarised using the mini-

mum and median RPD. Comparisons between different pheromone representations and

assignment orders were conducted using these two measures.

As the distribution of minimum and median RPD values within each problem type is

also non-normal, nonparametric statistical tests were used to perform comparisons. Com-

parisons between pairs of pheromone representations (or between ACO and ACOundir) were

performed within each combination of the other independent variables (i.e., use or not of

heuristic information or local search and assignment order used with the QAP, GAP and
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CSeqP). Similarly, comparisons of assignment orders for the GAP were performed within

each combination of the other independent variables and were conducted on the raw pro-

portion of feasible solutions produced.

In the remainder of this chapter a pheromone representation, such as C× C is used to

refer to ACO using that pheromone representation.

Example Comparison Table

Comparisons between alternative pheromones (and ACOundir) and between alternative as-

signment orders for the GAP are presented in tabular form as shown in Table 7.5 below.

This is a contrived example comparing the minimum RPD results of ACOundir with C× C

and C×P , and is read as follows. To determine how the performance of ACOundir compares

against C × C, locate ACOundir in the left-most column and then within that row locate

the cell in the column under C×C. In this instance, the > symbol indicates that ACOundir

produced higher values for minimum RPD than C × C. The “(α =1%)” below indicates

that this result is statistically signifcant at the 1% level. It does not indicate the magnitude

of the difference. Each comparison is presented once, so if the difference between C × P

and C× C were sought, it is C× C that must be located in the left-most column.

If a difference exists between two alternatives but is not statistically significant, then

no significance level is shown below the direction indicator. The = symbol is used if the

probability that the observed difference is due to chance is above 85%, and hence it is

unlikely there exists an actual difference in relative performance.

As comparisons of solution cost/value are performed on the RPD, A < B indicates that

A produces better solutions than B, while A > B indicates the reverse. In comparisons

of the proportion of feasible solutions produced to the GAP instances, A > B indicates

that A produces more feasible solutions than B and hence A may be considered to perform

better than B in this respect.

Table 7.5: Example comparison table. The direction of any difference is shown with the
significance level below if the result is statistically significant based on a Mann-Whitney
test. Comparisons are read by locating the first pheromone A in the left-most column and
then taking the difference direction indicator, such as <, from the the column corresponding
to the second pheromone B, indicating the result A < B.

C× C C× P
ACOundir > <

(α =1%) (α =10%)
C× C <
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7.2 Results

7.2.1 TSP

The TSP instances studied are summarised in Table 7.6. All of these are available at the

TSPLIB (Reinelt, 2004).

Table 7.6: TSP instances.

Instance Size Optimal cost
gr24 24 1272
hk48 48 11461
eil51 51 426
st70 70 675
eil76 76 538
kroA100 100 21282
d198 198 15780
lin318 318 42029
pcb442 442 500778
att532 532 27686

Pheromone Representation Comparative Performance

The two pheromones used with the TSP were C × C and C × P . A Kruskal-Wallis test

comparing ACOundir, C×C and C×P shows statistically significant differences between the

three. Table 7.7 shows the results of Mann-Whitney tests comparing pairs of algorithms.

Although both minimum and median RPD were compared, the results are almost entirely

identical and hence only one table of comparisons is shown. The order of performance of

the alternatives was fairly constant across ACS and MMAS, as well as when heuristic

information and local search are used. The only exceptions are:

• When neither heuristic information nor local search is used, the difference between

C×C and C×P is not statistically significant, although the direction of difference is

the same.

• When heuristic information is used, but local search is not used, there is no statisti-

cally significant difference between the minimum RPD of ACOundir and C× P .

It should be noted that the performance of all three alternatives is significantly improved

by the use of heuristic information.

As the constructive algorithm used in these experiments chooses the first city randomly,

it was considered possible that this might unfairly disadvantage C × P , which learns the
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Table 7.7: Pairwise comparisons of minimum RPD achieved by ACOundir and ACO with
different pheromone representations for the TSP. The direction of any difference is shown
with the significance level below if the result is statistically significant based on a Mann-
Whitney test.

C× C C× P
ACOundir > >

(α =1%) (α =1%)
C× C <

(α =1%)

absolute position of cities in the permutation. However, tests involving C× P and a fixed

initial city produced poorer results than the original.

Overall, ACOundir (here representing both itself and its heuristically guided counterpart

ACOheur), C× C and C× P may be ranked in terms of solution cost as

C× C ≺ C× P ≺ ACOundir

where A ≺ B means that, in general, A produces better solutions than B.

7.2.2 MKP

The MKP instances studied are summarised in Table 7.8. Instances from the mknap1

problem set are named according to mknap1-nitem, where n is the number of items in the

problem. The mknapcb1 problem set, developed and studied by Chu and Beasley (1998b),

contains 30 instances, the first 10 with a tightness ratio of 0.25, the next 10 with a tightness

ratio of 0.5 and the remainder with a tightness ratio of 0.75.1 The instances used in this

study are named according to mknapcb1-t-i, where t is the tightness ratio of the instance

and i is the index of that instance within the list of instances with that tightness ratio.

Pheromone Representation Comparative Performance

The four pheromone representations examined with the MKP were C, Sp × C; C2 (copre-

sent), C × C and C × P . The last two are representation-oriented pheromones that may

be used as solutions are constructed as sequences of the items included. The second is a

second order version of C, which has the following details when placed in the framework

introduced in Section 4.2. Given a set of solution characteristics C = C, the pheromone

1The tightness ratio is a measure of the tightness of knapsack capacity constraints, calculated according
to bi/

∑n
i=1 rij where bi is the capacity of knapsack i, rij is the amount of knapsack i’s capacity required

by item j and n is the number of items (Chu and Beasley, 1998b).
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Table 7.8: MKP instances.

Instance Items Knapsacks Optimal value Best known value
mknap1-6item 6 10 3800
mknap1-10item 10 10 8706.1
mknap1-15item 15 10 4015
mknap1-20item 20 10 6120
mknap1-28item 28 10 12400
mknap1-39item 39 5 10618
mknap1-50item 50 5 16537
mknapcb1-0.25-1 100 5 24381
mknapcb1-0.25-2 100 5 24274
mknapcb1-0.25-3 100 5 23551
mknapcb1-0.5-1 100 5 42757
mknapcb1-0.5-2 100 5 42545
mknapcb1-0.5-3 100 5 41968

associated with adding the item i ∈ C to the partial solution sp is

τ(sp, i) =

{
mean(sp, i, τ2) if |Ci| > 0

τ1 otherwise
(7.3)

where τ2 is the pheromone representation describing pairs of items being copresent in

a solution, τ1(i) = τ0 ∀i ∈ C (i.e., the initial component is selected randomly, which

encourages exploration), Ci = {i′ ∈ sp}, and the function mean is defined as

mean(sp, i, τ2) =

∑
i′∈Ci

τ2(i, i
′)

|Ci|
(7.4)

where τ2(i, i
′) is the learned utility of including both item i and item i′ in the same solution.

The mean of relevant pheromone values is used in preference to the sum so that when

heuristic information is used the influence of pheromone remains the same regardless of

the size of the solution.

Across the four combinations of ACO algorithm (ACS orMMAS) and heuristic versus

no heuristic information the following relationships were found to be consistent:

• ACO with any pheromone outperforms ACOundir and ACOheur.

• All other pheromones outperform C× C.

• C pheromone outperforms Sp × C; C2 (copresent) pheromone.

The performance of all algorithms was improved by the use of heuristic information.
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Table 7.9: Pairwise comparisons of minimum RPD achieved by ACOundir and ACO with
different pheromone representations for the MKP, under ACS and MMAS when using
heuristic information. The direction of any difference is shown with the significance level
below if the result is statistically significant based on a Mann-Whitney test.

ACS MMAS
C Sp × C; C2 C× C C× P C Sp × C; C2 C× C C× P

ACOheur > > > > > > > >
(α =1%) (α =1%) (α =1%) (α =1%) (α =1%) (α =1%) (α =1%) (α =1%)

C < < < < < >
(α =10%) (α =1%) (α =5%) (α =10%) (α =5%)

Sp × C; C2 < < < >
(α =1%) (α =10%) (α =5%) (α =1%)

C× C > >
(α =10%) (α =1%)

However, the results also showed some sensitivity to the ACO algorithm used and to

whether or not heuristic information was used. In particular, when heuristic information

is not used, the most effective pheromone representation is actually C × P , followed by

C and Sp × C; C2 (copresent), which performed similarly. When heuristic information is

used with ACS, C outperforms Sp×C; C2 (copresent), which outperforms C×P . However,

the best results (for all pheromones) were achieved when using MMAS with heuristic

information, where C× P pheromone produces the best results. Table 7.9 summarises the

comparisons of minimum RPD for both ACS andMMAS using heuristic information. As

the single pheromone value from C associated with including an item is, in effect, split

across multiple pheromone values when using C × P , it was considered possible that the

algorithm converges too quickly when using C. However, experiments in which the amount

by which pheromone values were updated was reduced produced inconsistent improvement

when using C.

In these experiments the following ranking of alternative pheromones and ACOundir (or

ACOheur) in terms of solution value appears to hold when either heuristic information is

not used or the ACO algorithm isMMAS:

C× P � C � Sp × C; C2 (copresent) � C× C � ACOundir

where A � B means that, in general, A produces better solutions than B, while when ACS

is used with heuristic information:

C � Sp × C; C2 (copresent) � C× P � C× C � ACOundir

The often superior performance of C × P , a pheromone that has never been consid-

ered for use with the MKP and which intuitively appears inappropriate, requires further

investigation.
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7.2.3 GSP

The GSP instances studied are summarised in Table 7.10. These instances are from

a data set used by Blum (2004). The whizzkids97-gsp instance is a true GSP in-

stance, developed for a timetabling competition (Blum, 2004), while whizzkids97-jsp

and whizzkids97-osp are JSP and OSP versions of the original respectively. All other in-

stances are named according to name-g, where name is the name of the original benchmark

JSP instance and g is the group size used to create a GSP instance. Hence, ft10-1 is the

original ft10 JSP instance, ft10-10 is an OSP instance derived from that, and ft10-5 is

an intermediate GSP instance.

Best known costs are those reported by Blum (2004), with the exception of the JSP

and OSP whizzkids97 instances for which no results could be found in the literature. The

best known costs used for these two instances are those obtained in this study.

Table 7.10: GSP instances.

Instance Operations Jobs Machines Optimal cost Best known cost
ft10-1 100 10 10 930
ft10-5 100 10 10 748
ft10-10 100 10 10 655
la38-1 225 15 15 1196
la38-8 225 15 15 954
la38-15 225 15 15 943
whizzkids97-jsp 197 20 15 601
whizzkids97-gsp 197 20 15 469
whizzkids97-osp 197 20 15 379

Pheromone Representation Comparative Performance

The pheromone representations used with the GSP were C × C, C × P and Sp × C; C2

(related succeeding) (referred to as PHsuc, PHpos and PHrel in Chapter 5). Considering all

problem instances, Sp×C; C2 (related succeeding) clearly outperforms all other approaches,

regardless of the ACO algorithm used and whether or not heuristic information is used. C×
P is next best, and produces almost equivalent results when OSP instances are considered

separately. Table 7.11 shows the results of Mann-Whitney tests comparing alternative

approaches when heuristic information is not used. These results were the same for ACS

andMMAS.

Considering results for each problem type, JSP, GSP and OSP, ACOundir (and ACOheur)

outperforms C× C on both the JSP and GSP. However, C× C outperforms ACOundir (and

ACOheur) on OSP instances. With the exception of GSP (i.e., not JSP or OSP) instances
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Table 7.11: Pairwise comparisons of minimum RPD achieved by ACOundir and ACO using
different pheromone representations for the JSP, GSP and OSP when heuristic information
is not used. The direction of any difference is shown with the significance level below if
the result is statistically significant based on a Mann-Whitney test.

Sp × C; C2 C× C C× P
ACOundir > < >

(α =1%) (α =1%)
Sp × C; C2 < <

(α =1%) (α =1%)
C× C >

(α =1%)

Table 7.12: Pairwise comparisons of minimum RPD achieved by ACOundir and ACO with
different pheromone representations for the OSP when heuristic information is not used.
The direction of any difference is shown with the significance level below if the result is
statistically significant based on a Mann-Whitney test.

C× C C× C C× P
ACOheur > > >

(α =1%) (α =1%) (α =1%)
Sp × C; C2 < <

(α =1%)
C× C >

(α =1%)

when not using heuristic information, all of these differences are statistically significant at

the 1% level. Table 7.12 shows the results of Mann-Whitney tests comparing alternative

approaches to the OSP instances when heuristic information is not used. Note that when

heuristic information is used the difference between Sp × C; C2 (related succeeding) and

C× P becomes statistically significant.

Considering the JSP, GSP and OSP instances as a whole, or within JSP and GSP

instances, the following ranking of alternative pheromones and ACOundir (or ACOheur)

holds:

Sp × C; C2 (related succeeding) ≺ C× P ≺ ACOundir ≺ C× C

where A ≺ B means that, in general, A produces better solutions than B. On OSP

instances, the relative order C× C and ACOundir (and ACOheur) is reversed.

7.2.4 QAP

The QAP instances studied are summarised in Table 7.13. They are all available at the

QAPLIB (Burkard, Çela, Karisch and Rendl, 2004).
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Table 7.13: QAP instances.

Instance Size Optimal cost Best known cost
nug12 12 578
tai12a 12 224416
nug15 15 1150
nug20 20 2570
tai25a 25 1167256
nug30 30 6124
tai35a 35 2422002
ste36a 36 9526
tho40 40 240516
sko49 49 23386
tai50a 50 4938796
sko56 56 34458
sko64 64 48498

Pheromone Representation Comparative Performance

The two pheromone representations used with the QAP were Cit × Cres and Cres × Cres,

where Cit is the set of facilities and Cres is the set of locations. The first pheromone is typical

of those used for assignment problems, while the latter is an alternative representation-

oriented pheromone that may be used because solutions are permutations of elements from

Cres. The elements of Cres are augmented by an element corresponding to the empty

solution so that it can learn which location to assign to the first facility. To assess the

sensitivity of the algorithm to the assignment order used, three assignment orders were

used:

Static, fixed order (SFO) A static assignment order where facilities are assigned in the

same order as they appear in the instance description.

Dynamic, randomised order (DRO) The next facility to assign is chosen randomly

according to a uniform distribution.

High flow first (HF) A static order in which facilities are assigned in non-increasing

order of their total flow requirements.

As Cres×Cres requires a static assignment order to be sensibly applied, comparisons between

the two pheromones were carried out only within results for SFO and HF assignment orders.

Comparisons between ACOundir and Cit × Cres were conducted for all assignment orders.

Table 7.14 shows the results of Mann-Whitney tests comparing alternative approaches

when local search is not used. These results vary little between ACS orMMAS, with the
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Table 7.14: Pairwise comparisons of minimum RPD achieved by ACOundir and ACO with
different pheromone representations for the QAP, under ACS and MMAS when local
search is not used. The direction of any difference is shown with the significance level
below if the result is statistically significant based on a Mann-Whitney test.

Using SFO
ACS MMAS

Cit × Cres Cres × Cres Cit × Cres Cres × Cres

ACOundir > > > >
(α =1%) (α =10%) (α =1%) (α =1%)

Cit × Cres < <
(α =1%) (α =1%)

Using HF
ACS MMAS

Cit × Cres Cres × Cres Cit × Cres Cres × Cres

ACOundir > > > >
(α =1%) (α =1%) (α =1%) (α =5%)

Cit × Cres < <
(α =1%) (α =1%)

exception that the difference between ACOundir and Cres×Cres is not statistically significant

underMMAS. Using DRO, Cit×Cres consistently produces better solutions than ACOundir

when local search is not used. Thus, when local search is not used, ACOundir, Cit × Cres

and Cres × Cres may be ranking in terms of solution cost as

Cit × Cres ≺ Cres × Cres ≺ ACOundir

where A ≺ B means that, in general, A produces better solutions than B.

When local search is used, ACOundir, Cit × Cres and Cres × Cres were able to find the

optimal solution to the nug12, tai12a, nug15 and nug20 instances in every case, and to

the nug30 instance in many cases. On the nug30 instance, ACOundir was able to find the

optimal solution more often than either Cit × Cres or Cres × Cres. On two of the largest

instances with which local search was used, tai25a and tai35a, all approaches were able

to find good solutions (within 2% of the optimal), and in some cases were able to find

optimal solutions. However, in most cases Cit × Cres found better solutions than ACOundir

and Cres×Cres and found the optimal solution on a greater number of runs. Furthermore,

comparing the median RPD results for the three reveals that Cit×Cres finds proportionally

more good quality solutions than Cres × Cres, which in turn produces proportionally more

good quality solutions than ACOundir. The ability of Cit×Cres to converge on good quality

solutions when local search is used suggests that on larger instances it may perform better

than ACOundir with local search.
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7.2.5 GAP

The GAP instances studied are summarised in Table 7.15. They are available at the OR-

Library (Beasley, 2005). The names used here are derived according to [problem set]-i,

where [problem set] is the name of the set of instances and i is the index of the instance

within that set.

Table 7.15: GAP instances.

Instance Tasks Agents Optimal value
gap1-1 15 5 336
gap1-2 15 5 327
gap1-3 15 5 339
gap1-4 15 5 341
gap1-5 15 5 326
gap2-1 20 5 434
gap2-2 20 5 436
gap2-3 20 5 420
gap2-4 20 5 419
gap2-5 20 5 428
gap3-1 25 5 580
gap4-1 30 5 656
gap5-1 24 8 563
gap6-1 32 8 761
gap7-1 40 8 942
gap8-1 48 8 1133
gap9-1 30 10 709
gap10-1 40 10 958
gap11-1 50 10 1139
gap12-1 60 10 1451

GAP Assignment Orders Studied

The assignment orders studied in Section 3.3.1 were used with each combination of ACO

algorithm and pheromone representation for the GAP. The static least constrained assign-

ment order was not studied as it was proposed as an example of a poor assignment order

and has been demonstrated to be so. Below is a list of the assignment orders used (full

descriptions are given in Section 3.3.1):

• Static, fixed order (SFO)

• Dynamic, randomised order (DRO)

• Static most constrained (SMC)
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• Dynamic most constrained (DMC)

• Dynamic candidate set (DCS)

• Dynamic, probabilistic using a static constrainedness measure (DPS)

• Dynamic, probabilistic using a dynamic constrainedness measure (DPD)

Initial analysis was performed on each of the last five assignment orders to determine

which of the two constrainedness measures described in Section 3.3.1 produces a higher

proportion of feasible solutions. A statistically significant difference was only found be-

tween DMCa and DMCp (i.e., DMC using either the absolute or proportional measure of

constrainedness), with DMCa producing more feasible solutions. All other assignment or-

ders performed slightly better using the proportional constrainedness measure. Subsequent

comparisons were conducted for only the better performing variant of each assignment or-

der.

The next section reports on the relative performance of different pheromones (and

ACOundir) across assignment orders, while the subsequent section reports on the relative

performance of different assignment orders when using either ACOundir or the best per-

forming pheromone for this problem.

GAP Pheromone Representation Comparative Performance

The two pheromone representations used with the GAP were Cit × Cres and Cres × Cres,

where Cit is the set of tasks and Cres is the set of agents. As with the QAP, the latter

is an alternative representation-oriented pheromone that may be used when solutions are

permutations of elements from Cres. The elements of Cres are augmented by an element

corresponding to the empty solution so that it can learn which agent to assign to the first

task. To assess the sensitivity of the algorithm to the assignment order used, comparisons

where conducted within each of the assignment orders described above. As Cres × Cres

requires a static assignment order to be sensibly applied, comparisons between the two

pheromones were carried out only within results for SFO and SMC. Comparisons between

ACOundir and Cit × Cres were conducted for all assignment orders.

Table 7.16 shows the results of Mann-Whitney tests comparing alternative approaches

when heuristic information is not used. These results were the same for both SFO and

SMC and when using ACS orMMAS, with the following exceptions:

• When using SFO and heuristic information, ACOheur performs equivalently to Cres×
Cres underMMAS in terms of solution value.

• When using SMC and heuristic information with ACS, the difference in minimum

RPD between Cit × Cres and Cres × Cres is significant at the 5% level.
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Table 7.16: Pairwise comparisons of pheromone representations for the GAP when using
either SFO or SMC assignment orders when heuristic information is not used. The direction
of any difference between minimum RPD and the proportion of feasible solutions produced
(labelled “feasible solutions”) is shown with the significance level below if the result is
statistically significant based on a Mann-Whitney test.

minimum RPD feasible solutions
Cit × Cres Cres × Cres Cit × Cres Cres × Cres

ACOundir > > < <
(α =1%) (α =1%) (α =1%)

Cit × Cres < >
(α =1%) (α =1%)

Results for comparisons involving median RPD were the same, with the exception that the

difference between ACOundir and Cres × Cres was found to be statistically significant when

using heuristic information.

Comparisons between ACOundir and Cit × Cres with the dynamic assignment orders

found that Cit × Cres produces better solutions and more feasible solutions than ACOundir

regardless of the assignment order, ACO algorithm or whether heuristic information is used

or not. All results are statistically significant at the 1% level.

Across assignment orders, ACOundir (also representing ACOheur), Cit × Cres and Cres ×
Cres may be ranked in terms of solution value as

Cit × Cres � Cres × Cres � ACOundir

where A � B means that, in general, A produces better solutions than B. In terms of the

proportion of feasible solutions produced, the three alternatives may be ranked in the same

order, where A � B is interpreted as A produces more feasible solutions than B. This

last result is to be expected given that both Cit × Cres and Cres × Cres are only reinforced

by feasible solutions, and so are more likely to make assignments that will lead to more

feasible solutions being produced.

GAP Assignment Order Comparative Performance

The performance of different assignment orders was compared within results for ACOundir

and Cit×Cres, in terms of both the proportion of feasible solutions produced and the value

of those solutions.

Based on a Kruskal-Wallis test and subsequent pairwise comparisons using the Mann-

Whitney test of the proportion of feasible solutions produced by ACOundir under different

assignment orders, the following ranking can be made:
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SFO ≺ DRO � DCS ≺ DPD � DPS ≺ SMC � DMC

where A ≺ B indicates there is strong statistical evidence that A typically produces fewer

feasible solutions than B, while A � B indicates that while A often produces fewer feasible

solutions than B, the result is not statistically significant. This is similar to the results

described in Section 3.3.1, except that the differences between the best assignment orders

are more definite. Considering results for ACOheur, the assignment orders are ranked in

the same order, except for DCS and DPD which switch places.

The quality of the best solutions produced by ACOundir and ACOheur under different

assignment orders is strongly related to the proportion of feasible solutions produced.

This result is to be expected given that the quality of solutions produced by an undirected

search (or a search biased slightly towards components likely to produce a feasible solution)

is dependent on the number of solutions that search encounters.

When pheromone is used a different relationship emerges between the proportion of

feasible solutions produced and the quality of those solutions. Table 7.17 shows the results

of Mann-Whitney tests comparing assignment orders in terms of minimum RPD and the

proportion of feasible solutions produced when heuristic information is not used. Exami-

nation of the relative performance of assignment orders shows that amongst the heuristic

assignment orders a high proportion of feasible solutions is associated with a lower solu-

tion value. When heuristic information is not used the assignment orders may be ranked

in terms of the proportion of feasible solutions produced (from least to most) as

SFO ≺ DRO � DPD ≺ DCS � DPS ≺ SMC ≺ DMC

and in terms of the quality of the best solution produced (worst to best) as

SFO � SMC � DMC ≺ DCS ≺ DRO � DPD � DPS

where A ≺ B indicates the difference is statistically significant while A � B indicates

that it is not. When heuristic information is used, the order in terms of feasible solutions

produced changes little, becoming

DRO � DPD � DPS ≺ SFO ≺ DCS ≺ SMC � DMC

with the most notable change being the much improved performance of SFO, which is

equivalent to using no assignment order heuristic. However, the cost of solutions produced

using SFO remains the worst, as this ranking in terms of quality of the best solution

produced shows:

SFO ≺ DMC ≺ SMC ≺ DCS ≺ DPD � DRO � DPS
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Table 7.17: Pairwise comparisons of assignment orders for the GAP when using Cit × Cres

pheromone when heuristic information is not used. The direction of any difference is shown
with the significance level below if the result is statistically significant based on a Mann-
Whitney test.

minimum RPD
DRO SMCp DMCa DCS DPSp DPDp

SFO > > > > > >
(α =1%) (α =1%) (α =1%) (α =1%)

DRO < < < > >
(α =1%) (α =1%) (α =1%)

SMCp > > > >
(α =1%) (α =1%) (α =1%)

DMCa > > >
(α =1%) (α =1%) (α =1%)

DCS > >
(α =1%) (α =1%)

DPSp <

feasible solutions
DRO SMCp DMCa DCS DPSp DPDp

SFO < < < < < <
(α =5%) (α =1%) (α =1%) (α =1%) (α =5%)

DRO < < < < <
(α =1%) (α =1%) (α =1%) (α =5%)

SMCp < > > >
(α =1%) (α =1%) (α =1%)

DMCa > > >
(α =1%) (α =1%) (α =1%)

DCS < >
(α =10%)

DPSp >
(α =10%)
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It should be noted that when heuristic information was not used, under the majority of

assignment orders no algorithm was able to find feasible solutions to the gap8-1 instance.

The exceptions were DRO and DPD, which were able to find two and one feasible solution(s)

respectively in total across all 10 random seeds. Hence their ability to find any feasible

solutions to this instance appears to be a chance result. When heuristic information was

used, all assignment orders were able to produce feasible solutions to this instance.

The relative performance of different assignment orders in terms of solution quality

clearly varies little between using and not using heuristic information. However, the quality

of solutions produced by ACO under every assignment order was better when heuristic

information was used. This result is likely due to the larger number of feasible solutions

produced when heuristic information is used, as it favours “safer” assignments as opposed

to more profitable ones. Furthermore, the approximately inverse relationship between

the proportion of feasible solutions produced and solution quality suggests that the best

solutions to these instances are found near the bounds of feasible space. Hence, there can be

a trade-off between seeking high quality solutions and keeping the probability of producing

feasible solutions high. A similar finding was made by Randall (2004) who, in addition to

using a dynamic randomised assignment order, used an adaptive heuristic measure that

probabilistically favours assignments with either low cost (the GAP instances studied are

minimisation instances) or low resource utilisation.

7.2.6 CSeqP

The CSeqP instances studied are summarised in Table 7.18, and are those studied by Smith

et al. (1996).

Pheromone Representation Comparative Performance

The four pheromone representations used with the CSeqP were Cit × Cres, Cres × Cres,

Sp × Cit × Cres; C
2
it × Cres and Sp × Cit × Cres; C

2
it (same model), where Cit is the set of

production line sequence positions and Cres is the set of car models. The first pheromone is

typical of those used for assignment problems, while the second is a representation-oriented

pheromone that may be used because solutions are sequences of elements from Cres. For the

second pheromone the elements of Cres are augmented by an element corresponding to the

empty solution so that it can learn which model to assign to the first sequence position. The

last two are second order representations where the learned utility of assigning a particular

model to a sequence position is based on what other sequence positions have been assigned

the same model. Given the length of their descriptive names, for the remainder of this thesis

the abbreviations PHassign-pairs and PHsame-model are used for Sp × Cit × Cres; C
2
it × Cres and

Sp×Cit×Cres; C
2
it (same model) respectively. Using the framework introduced in Section 4.2
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Table 7.18: CSeqP instances.

Instance Cars Models Optimal cost
n20t1 20 4 58
n20t2 20 4 40
n20t3 20 4 29
n20t4 20 4 10
n20t5 20 4 150
n40t1 40 4 146
n40t2 40 4 94
n40t3 40 4 66
n40t4 40 4 33
n40t5 40 4 352
n60t1 60 4 238
n60t2 60 4 152
n60t3 60 4 105
n60t4 60 4 58
n60t5 60 4 562
n80t1 80 4 330
n80t2 80 4 215
n80t3 80 4 146
n80t4 80 4 82
n80t5 80 4 772

they have the following details. Given a set of solution characteristics C = Cit × Cres, the

pheromone associated with adding the assignment (i, r) ∈ C to the partial solution sp is

τ
(
sp, (i, r)

)
=

{
mean

(
sp, (i, r), τ2

)
if |C(i,r)| > 0

τ1(i, r) otherwise
(7.5)

where τ2 is the pheromone representation describing pairs of solution characteristics (i.e.,

either C2
it × Cres or C2

it (same model)) and τ1 is the first order Cit × Cres pheromone rep-

resentation. The function mean is defined differently for the two pheromones because the

first maintains, for each model, the learned utility of assigning pairs of sequence positions

that model, while the second maintains, for each pair of sequence positions, a single value

representing the learned utility of assigning them the same model. Hence, for PHassign-pairs,

mean is defined as

mean
(
sp, (i, r), τ2

)
=

∑
i′∈C(i,r)

τ2(i, i
′, r)

|C(i,r)|
(7.6)
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where τ2(i, i
′, r) is the learned utility of assigning a car of model r to both sequence positions

i and i′, while for PHsame-model, mean is defined as

mean
(
sp, (i, r), τ2

)
=

∑
i′∈C(i,r)

τ2(i, i
′)

|C(i,r)|
(7.7)

where τ2(i, i
′) is the learned utility of assigning sequence positions i and i′ the same model.

In both definitions, C(i,r) = {i′ ∈ Cit | (i′, r) ∈ ssp}. That is, all sequence positions in the

partial solution assigned the same model as the candidate. The mean of relevant pheromone

values was used because the number of relevant values can differ between models (and hence

taking the sum would be inappropriate) and both learn similar information to that used

with the GCP, for which the ACO algorithm of Costa and Hertz (1997) uses the mean

pheromone value.

It should be noted that PHsame-model is the pheromone described in Section 6.2.4 as an

example of shared solution representations in pheromone.

To assess the sensitivity of the algorithm to the assignment order used, two assignment

orders were used:

Static, fixed order (SFO) A static assignment order where sequence positions are as-

signed in order, from first to last.

Dynamic, randomised order (DRO) The next sequence position to assign is chosen

randomly according to a uniform distribution.

As Cres × Cres requires a static assignment order to be sensibly applied it is only involved

in comparisons within results for SFO.

Table 7.19 shows the results of Mann-Whitney tests comparing alternative approaches

when using MMAS, the better performing of the two ACO algorithms. Although com-

parisons for ACS are not shown, it should be noted that when using ACO with SFO,

the performance of PHassign-pairs was worse than all other alternatives. Examination of the

distributions of solution costs for this pheromone for both ACS andMMAS reveals that

the algorithm is unable to converge when using SFO. The performance of all approaches

was improved when using DRO. Using this assignment order, the relative performances

of alternative pheromones under ACS and MMAS are similar, with the exception that

the difference between PHassign-pairs and Cit × Cres is not statistically significantly different

under ACS. Additionally, using ACS with DRO, PHassign-pairs outperforms Cit×Cres on large

instances (60–80 cars), although the reverse is true underMMAS.

When using SFO with the best performing ACO algorithm, MMAS, the alternatives

may be ranked in terms of solution cost as

Cit × Cres ≺ PHsame-model ≺ PHassign-pairs ≺ Cres × Cres ≺ ACOundir
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Table 7.19: Pairwise comparisons of pheromone representations for the CSeqP when using
MMAS. The direction of any difference is shown with the significance level below if the
result is statistically significant based on a Mann-Whitney test.

Using SFO
PHassign-pairs Cit × Cres PHsame-model Cres × Cres

ACOundir > > > >
(α =1%)

PHassign-pairs > = <
(α =1%)

Cit × Cres < <
(α =1%) (α =1%)

PHsame-model <

Using DRO
PHassign-pairs Cit × Cres PHsame-model

ACOundir > > >
(α =1%) (α =1%)

PHassign-pairs > <
(α =1%) (α =1%)

Cit × Cres <
(α =1%)
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while when using DRO withMMAS they may be ranked as

Cit × Cres ≺ PHassign-pairs ≺ PHsame-model ≺ ACOundir

It should be noted that when using DRO, both Cit×Cres or PHassign-pairs often achieved

minimum solution costs within 1–5% of the optimum, even on large instances, while the

alternatives were significantly worse, with costs often greater than 20% more than the

optimum. On a small number of instances PHassign-pairs found better solutions than Cit×Cres.

Notably, the best performing pheromone for this problem was Cit × Cres and not the

second order pheromone suggested in Chapter 6, although both performed well. Although

both have the property of unique representation, in the previous chapter PHassign-pairs was

suggested as the most appropriate as it represents how the cost of a particular model at a

particular location in the production sequence is dependent on the locations of other cars

of the same model. In contrast, Cit × Cres learns the utility of placing a particular model

at a particular position in the production sequence regardless of the location of other cars

of the same model. However, if ACO is considered to be searching for a single high quality

solution, then modelling which car model belongs at each position in the sequence does

largely model characteristics that determine solution cost. Examination of the distribution

of solution costs produced by Cit × Cres reveals that, on average, almost 40% of solutions

produced have the same cost and it is therefore likely that a large proportion of these are

the same solution. Consequently, it does appear that Cit × Cres converges onto a single

good solution for each instance to which it is applied.

7.3 Summary

This chapter presented the results of comparisons between alternative pheromone represen-

tations for a number of well-known optimisation problems to test the hypothesis that the

best performing pheromone representations are those that model solution characteristics

that are directly associated with solution cost or value. Additionally, the performances of

a number of assignment orders for the GAP were compared.

The TSP and QAP are both without constructed solution biases, so the alternative

pheromone representations used with each are free from any inherent bias. However, the

two alternatives for each problem do not perform equivalently. With both problems, the

best performing pheromone is that which models solution characteristics that directly con-

tribute to solution cost, namely C × C for the TSP and Cit × Cres for the QAP. With the

TSP, this result holds regardless of whether heuristic information or local search is used,

although the performance of all alternatives is improved by the use of both heuristic in-

formation and local search. When local search is used with the QAP, ACOundir, Cit × Cres

and Cres×Cres were all able to find optimal or near optimal solutions for every problem to
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which they were applied. However, Cit×Cres performed slightly better on two of the three

largest instances with which local search was used and converges more quickly to its best

solution. This suggests that multiple, shorter runs of Cit × Cres with local search should

outperform ACOundir with local search.

As JSP and GSP instances have a construction bias, any alternative pheromone rep-

resentations for those problems will exhibit a bias. Furthermore, JSP, GSP and OSP

instances typically have a representation bias. As shown in Section 5.2, pheromone repre-

sentations for the JSP and GSP show predictable patterns of bias, with C × C showing a

distinct bias towards poor solutions and Sp×C; C2 (related succeeding) showing a clear bias

towards good solutions. Consequently, it is not surprising that the former was found in this

study to perform worse than ACOundir while the latter performed best on these problems.

As the OSP has no construction bias all three pheromones are CBSs when applied to this

problem. Certainly, C×C shows no bias towards poor solutions on this problem. However,

the order of alternatives in terms of performance does not change, with Sp×C; C2 (related

succeeding) still outperforming C× P , which outperforms C× C and ACOundir.

The MKP also has both a representation and construction bias, so pheromone represen-

tations for it are not CBSs, although no predictable biased behaviour could be identified in

the analysis of this problem presented in Section 5.3.1. Results for this problem are inter-

esting as, although the suggested pheromone representation C performs consistently well,

the best results were obtained by a pheromone previously unused with the MKP, C × P .

It should be noted that, unlike the GSP, where the solution characteristics modelled by

representation-oriented pheromones are loosely related to the solution represented, C × C

and C× P pheromones applied to the MKP do implicitly model which items are included

in the solution. Considering C× P , it is clear that pheromone that would typically be as-

sociated with a single characteristic in C is split across values associated with each position

that an item may occupy in a solution. It is unclear how this might help the algorithm

to find better solutions than if a single pheromone value were associated with each item.

The algorithm’s sensitivity to the actual ACO algorithm used and whether or not heuristic

information is used need to be explored further. It is worth noting that the second order

version of C also performed well, although often not as well as C.

The GAP, like most assignment problems, has no representation bias. However, agent

capacity constraints introduce a construction bias, which on all the instances studied also

includes infeasible partial solutions. Analyses in Section 5.3.2 indicate that solution charac-

teristics associated with assignments that make relatively little use of agent capacity occur

in more solutions, yet because no clear relationship exists between capacity utilisation and

assignment value there is accordingly no clear relationship between solution characteris-

tic frequency and solution value. Nevertheless, the best performing pheromone for this
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problem is that associated with assignments, rather than the order in which resources are

assigned, a structural feature of solutions not directly related to the assignments made.

This pheromone produced the best solutions regardless of the assignment order or whether

or not heuristic information was used.

The assignment order used when solving the GAP clearly has an impact on the number

of feasible solutions produced and the quality of solutions found. Assigning tasks in the

same order as they appear in an instance description is consistently worst on both measures.

When choosing an alternative scheme for determining the assignment order, a balance

must be sought between seeking an adequate number of feasible solutions and seeking high

quality solutions. Typically, with the exception of SFO, those assignment orders associated

with the best quality solutions are also associated with the smallest number of feasible

solutions. However, this result may be related to the way the ACO algorithm explores

the search space: if the best solutions are found near the bounds of feasible space then

an algorithm exploring that region will likely encounter more infeasible solutions. This

interaction between the assignment order and reinforcement behaviour of ACO requires

further exploration.

The CSeqP solved here was in effect modelled as a GAP in which each model’s “capac-

ity” is the number of cars of that model, while each sequence position requires one unit

of its assigned model’s “capacity”. Accordingly, it has no representation bias, but does

have a construction bias due to models each having fewer cars than sequence positions.

Unlike the GAP it has no infeasible partial solutions. Across the two assignment orders

used, the first order Cit × Cres pheromone outperforms the alternatives. The suggested

second order pheromone performs very poorly when sequence positions are assigned in

strict order, but improves significantly when the order of assignment is randomised. When

using a dynamic randomised assignment order, both the first and second order pheromones

that are associated with assignments perform well (achieving results close to optimal), and

considerably better than representation-oriented alternatives and ACOundir. Notably, the

suggested pheromone, which most accurately captures those solution characteristics that

determine cost, is not as effective as its first order counterpart. Further investigation is

therefore required into alternative pheromone representations for problems whose objec-

tive functions are suggestive of more complex higher order pheromone representations to

determine if the use of higher order information is warranted when a first order pheromone

representation is available.

In summary, results of the comparative studies of alternative pheromone representations

for the TSP, GSP, QAP, GAP and CSeqP all indicate that identity-oriented pheromone

representations produce the best performance in ACO. With the TSP, GSP, QAP and GAP,

these identity-oriented pheromones also model solution characteristics directly related to

161



solution cost or value. However, with the CSeqP, the best performing identity-oriented

pheromone does not model solution characteristics that individually contribute to solution

cost, suggesting that although the identity-oriented second order pheromone does model

such characteristics, it does not offer the best means of learning which assignments to make.

More generally, this suggests that the use of second order pheromone representations when

a first order alternative exists may be unnecessary. Results for the MKP suggest that

although the identity-oriented pheromone that models solution characteristics associated

with solution value can perform well, it may be subject to premature convergence. Further

investigation of pheromone representations for this problem is required to understand why

a representation-oriented pheromone is able to outperform an identity-oriented pheromone.
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Chapter 8

Conclusions and Further Work

8.1 Summary

ACO is a maturing field of algorithms for combinatorial optimisation. Since its inception

in the early 1990s it has been applied to a wide range of combinatorial problems, often with

considerable success. A key aspect of its adaptation to different problems is the pheromone

representation used to model the solution characteristics added to partial solutions at

each step of the algorithm. Much of the ACO literature considers the development of a

construction graph for the problem to be solved as essential to the application of ACO

as it is a graph based shortest path problem that real ants solve when travelling from

the nest to a food source. However, as the algorithm has been applied to an increasing

range of problems that have little similarity with shortest path problems, novel pheromone

representations have had to be developed which model characteristics unrelated to the

construction graph used. Typically, these pheromone representations have been developed

in an ad hoc way, either by selecting a representation that intuitively appears to model

important solution characteristics or that has been used with similar problems previously.

Although some research has attempted to understand and predict ACO’s behaviour for

a given problem and pheromone representation, relatively little of this has examined how

it should be adapted to suit different problems. The ad hoc adaptation of ACO to some

problems has produced algorithms that do not perform to their potential. Consequently,

there is a need to adapt ACO using a more rigorous approach that takes into account

factors that will influence the algorithm’s performance.

Despite the important role of pheromone representations in the adaptation of ACO,

there has been no consistent notation for describing them. The notation developed in this

thesis provides a consistent and simple way to describe pheromone representations in terms

of the solution characteristics they model and is well-suited to the majority of existing

ACO applications. It is of particular benefit when systematically selecting pheromone
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representations based on a problem model.

The space of solutions explored by constructive metaheuristics such as ACO may be

viewed in a number of ways. A particularly informative view is the construction tree, rep-

resenting both the space of feasible sequences of solution components and the relationship

between individual decisions made during the solution construction process. Examination

of the construction trees for certain problems reveals that the choice of solution compo-

nents (and the resulting mapping from sequences of components to solutions) and problem

constraints can combine to introduce a solution bias. While alternative problem models

may alter these biases, many are a direct result of problem constraints and so cannot

be eliminated. Nevertheless, being aware of these biases may enable the development of

improved constructive search algorithms, including ACO.

In problems that have unavoidable infeasible solutions, such as most GAP instances,

these infeasible solutions have a probability of being produced that is above what would

be expected given their number. In assignment problems of this type, altering the order

in which items are assigned alters the number and distribution of infeasible paths in the

construction tree. A commonly used assignment order heuristic is to assign tightly con-

strained items early, which intuitively offers them a wider choice of assignments. Notably,

such an approach actually increases the probability of individual infeasible paths in the

construction tree by decreasing the number of steps before they are reached. However, it

also produces considerably fewer such infeasible paths and thereby reduces the probability

of producing an infeasible solution. Analysis of a number of assignment order heuristics

for the GAP reveals that both static and dynamic heuristics that assign highly constrained

items early can achieve a high probability of producing feasible solutions compared to what

is possible given problem constraints.

As instance size grows, the effects of low level constructed solution biases become rel-

atively small overall (given the large number of solutions that may be constructed), even

though the relative differences between solutions becomes larger. However, in an ACO

algorithm, constructed solution biases interact with the pheromone representation used.

Critically, if a problem has a construction bias, then there does not exist a pheromone

representation that is a competition-balanced system (CBS), in that individual solution

characteristics do not all appear with the same frequency in the construction tree. Fur-

thermore, some combinations of pheromone representation and problem that may be CBSs

are not free from bias, as a representation bias can still favour some solutions.

Some problems, notably the JSP, have an interesting structure that interacts with

different pheromone representations in predictable ways. While the poor performance of

PHsuc and good performance of PHrel with this problem has been previously established

empirically, and in relation to CBSs, a complete explanation of the underlying causes
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requires consideration of both the topology of the construction tree and the way solution

characteristics from PHsuc map onto the tree’s edges. Neither PHsuc nor PHrel is a CBS

when applied to the JSP, so both exhibit a bias. However, PHsuc has a relatively large

proportion of solution characteristics that are associated with decisions that, in addition

to often being part of poor solutions, make other decisions of a similar kind more likely. In

contrast, the distribution of solution characteristics from PHrel is such that characteristics of

poor solutions are often updated only by those solutions, while poor solutions also include

characteristics that exist in good solutions.

Other problems, such as the MKP and GAP, also show predictable patterns of solution

characteristic usage frequency, but solution characteristics are apparently not as strongly

associated with solutions of either high or low value, and so no clear bias can be predicted.

Although altering the way in which pheromone values are updated can be used to re-

duce bias, the choice of which pheromone representation to use cannot be ignored. To

this end, it has been proposed that pheromone representations be chosen such that the

solution characteristics they model are directly related to solution cost or value. Many

representation-oriented pheromones represent the same solution using differing sets of so-

lution characteristics—a feature that in itself may be undesirable—and indirectly model

those characteristics that most directly determine solution cost or value.

An algorithm for the selection of pheromone representations has been proposed that

ensures that the solution characteristics modelled are directly related to solution cost or

value and consequently that each solution is modelled by exactly one set of solution char-

acteristics. The pheromone representations it selects are therefore identity-oriented. While

such an approach cannot eliminate bias, as an identity-oriented pheromone applied to a

problem with either a representation or construction bias cannot be a CBS, modelling char-

acteristics that are strongly linked to solution cost or value will in many cases allow the

algorithm to learn more effectively and potentially counteract any bias. In the absence of

knowledge of how alternative pheromone representations will react to an underlying bias,

it therefore offers a practical alternative with identifiable advantages. If the effects of bias

are known, this knowledge may be used to override the default selection.

Comparisons of alternative pheromones for the TSP, MKP, GSP, QAP, GAP and

CSeqP reveals that, in most cases, identity-oriented pheromone representations outper-

form representation-oriented alternatives. In the TSP, GSP and GAP, these results hold

even if heuristic information or, in the case of the TSP, local search is used. Interestingly,

results for the MKP show that when heuristic information is not used, or when the ACO

algorithm is aMMAS, a C× P pheromone representation can outperform the intuitively

more appropriate C pheromone. Indeed, the C × P pheromone representation has never

been proposed for use with the MKP. However, when using ACS with heuristic informa-
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tion, both C and its second order counterpart outperform C × P . Results for the QAP

reveal that when local search is not used, the suggested pheromone can outperform an

alternative pheromone as well as an undirected search. When local search is used, all three

alternatives perform equivalently on smaller instances, finding the optimum in every case,

although the suggested pheromone performs better on two of the three largest instances

with which local search was used. When combining either pheromone representation for

the QAP with local search, very fast convergence to one solution was observed, especially

when using the pheromone associated with assignments. This suggests that when local

search is used a number of short runs of ACO may be a more effective way of sampling

the search space and may lead to better performance than an equivalent number of local

searches starting from randomly constructed solutions.

With the CSeqP, the two identity-oriented pheromones outperform two representation-

oriented alternatives when a dynamic randomised assignment order is used. The suggested

pheromone, a second order pheromone describing pairs of sequence positions assigned the

same particular model, performs very badly when positions are assigned in their original

order, while the first order pheromone associated with assignments still performs well.

Notably, when a randomised assignment order is used, the second order pheromone in

most cases performs slightly worse than its first order counterpart, suggesting that the

higher level information it provides may not be of benefit to the algorithm. Thus, even

though the first order pheromone does not learn exactly those solution characteristics that

contribute to cost (as an assignment on its own makes no direct contribution to cost) it

still appears to offer the most effective way to learn which assignments to make to produce

a good solution.

8.2 Contributions

This thesis has made a number of contributions to the field, which are summarised below:

• Solution biases that affect constructive algorithms have been identified. The repre-

sentation bias, which may affect iterative search algorithms as well as constructive,

is typically overlooked in the ACO literature. The construction bias is peculiar to

constructive algorithms and has also not been discussed previously. The underlying

causes of both biases have been identified and the biases present in the MKP, GSP

and GAP have been discussed. Knowledge of these two biases also allows for their

presence to be identified in problems not discussed in the thesis and hence for the

more informed application of ACO to other problems.

• A more thorough understanding of the effects of different assignment orders when

solving the GAP has been developed, showing that assignment order heuristics that
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assign tightly constrained items early increase the proportion of feasible solutions

that can be produced by consolidating infeasible paths nearer to the root of the

construction tree. Analysis of a number of relatively simple static and dynamic

assignment order heuristics has shown they can lead to the production of a high

number of feasible solutions.

• These biases, being a product of problem constraints and the construction pro-

cess, will also be present in other constructive heuristics and metaheuristics, such

as GRASP. The findings are therefore not limited to ACO alone.

• A notation for describing pheromone representations in terms of the solution char-

acteristics they model has been developed which can be applied to the majority of

ACO algorithms in the literature. A simple framework for describing higher order

pheromone representations has been described which makes clearer the steps required

in their implementation. Both of these make the direct comparison of different phero-

mone representations easier. The notation also supports the algorithm for selecting

pheromone representations developed in the thesis.

• The relationship between constructed solution biases and the previously defined con-

cept of a CBS has been established. This allows ACO algorithm developers to make

more informed choices regarding the pheromone representations they use with par-

ticular problems.

• A complete explanation for the relative performances of PHsuc and PHrel applied to

the GSP has been provided, complementing previous research in this area. An initial

analysis of pheromones for the MKP and GAP suggests that they do not have an

obvious bias. The techniques used in all three investigations may prove useful in the

analysis of other problems and pheromone representations.

• The distinction between representation- and identity-oriented pheromone represen-

tations has been defined and the potential benefits of identity-oriented pheromones

presented. In particular, such pheromones represent each solution by exactly one set

of solution characteristics and so each solution has a single learned value. Further-

more, the solution characteristics modelled will be directly related to solution cost, so

the algorithm should learn more directly than if a representation-oriented pheromone

were used.

• An algorithm has been developed for the selection of pheromone representations based

on characteristics of the problem being solved. The algorithm uses the objective

function to identify which solution characteristics are directly related to solution
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cost. It has been applied to a number of COPs, including some to which ACO is yet

to be applied.

8.3 Conclusions and Future Work

The ACO metaheuristic can produce good quality solutions to COPs if it is applied cor-

rectly. In particular, the pheromone representation used must be chosen carefully. The

possible presence of constructed solution biases in a problem must be considered by ACO

algorithm developers when choosing how solutions are built and which pheromone repre-

sentation to use. The structure inherent in the JSP (and non-OSP GSP instances) and its

interaction with particular pheromone representations suggests that other problems may

have a similarly exploitable structure (or a structure that cannot be exploited and which

promotes poor solutions). Initial analysis of the MKP and GAP suggests that pheromone

representations for these problems do not have an obvious bias, but new approaches to

investigating the potential for bias need to be explored and other problems must also be

studied.

As part of the continued exploration of bias in ACO algorithms, the role of local search

must be examined in more detail. Part of this involves the study of available local search

techniques and the expected bias they exhibit, as different local search procedures explore

the search space in different ways and will consequently give varying access to different

regions. Additionally, there is often a trade-off between the efficiency and effectiveness of

a local search (Dorigo and Stützle, 2004). While it is important to study the best way

to apply ACO and local search individually, the interaction between the two cannot be

ignored. For instance, it is conceivable that the use of a powerful local search procedure

to improve solutions before they are used to update pheromone information may lead to

rapid, and perhaps premature, convergence of the algorithm. Consequently research in

this area must consider how to achieve the best balance between exploitation of the best

solution characteristics found using local search and exploration of a range of different,

possibly less high quality, solutions.

In parallel with the further study of bias in ACO, extensions may be made to the

notation for describing pheromone representations and the framework for higher order

pheromones. Currently these are concerned primarily with static features of pheromone

representations and thus could be extended to encompass the dynamic behaviour of phero-

mone and how it is used and updated. The higher order pheromone framework takes some

initial steps in this direction, but more detail is needed. In particular, further investigation

is required to identify how best to use higher order information given the problem being

solved, an issue which also involves the study of bias.
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The decision algorithm presented in Chapter 6 represents an initial step towards the

systematic selection of pheromones based on the problem being solved. As the pheromone

representation notation is extended to include the dynamic use of pheromone information

this can be included as part of the decision algorithm’s suggestions. Given that the al-

gorithm is intended to identify solution characteristics that are strongly associated with

determining solution cost, its recommendations will likely correspond to those of a human

algorithm developer. However, there are some problems for which it would have diffi-

culty identifying a single most appropriate pheromone representation. One such class of

problems are multiple objective problems, an example being the SMTTP with changeover

costs (Iredi et al., 2001). In order to handle these problems, separate pheromone represen-

tations can be used for each objective (this was done by Iredi et al.) and the algorithm

can then be applied to each objective separately. Another class of problems for which a

single pheromone representation may not be appropriate are multiple task problems, such

as the p-hub median class of problems (Ernst and Krishnamoorthy, 1996). These prob-

lems model distribution networks and consist of two stages of solution construction, one to

identify nodes to become hubs, and a second to identify which hub each other node is to

use when routing commodities through the network. The two stages are thus separate, but

interacting. Again it may be possible to use separate pheromone representations for each

stage. However, as these problems have a single objective, the algorithm would require

modification to allow it to suggest pheromone representations for different parts of a single

objective.

Future versions of the algorithm, in addition to supporting a wider range of problems,

can be implemented in software and will take in objective functions written in a suitable

modelling language. This modelling language will likely be quite separate from the se-

quences ants produce so that important relationships between different parts of solutions

can be more easily identified. Given an implementation of the algorithm, the pheromone

selection software could be incorporated into a self-adapting ACO implementation, thereby

allowing for the rapid adaptation and application of ACO to new problems.
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Workshop on Ant Colony Optimization and Swarm Intelligence, ANTS 2004, Brussels,

Belgium, Vol. 3172 of Lecture Notes in Computer Science, Springer-Verlag, pp. 390–

397.
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Appendix A

Glossary of Problem Names and

Acronyms

This glossary contains brief descriptions of optimisation problems and their associated

acronyms for those problems that appear more than once in the thesis. With the exception

of the term a priori, italicised terms in descriptions appear elsewhere in the glossary.

2DHPPF. See 2D HP Protein Folding.

2D HP Protein Folding. An assignment problem in which the shape an amino acid

chain will fold into is predicted using the two-dimensional hydrophobic-polar model

of protein folding.

AIRLAND. See Aircraft Landing Problem.

Aircraft Landing Problem. An assignment problem in which aircraft must be assigned

landing times on one or more runways such that minimum separation constraints

between different aircraft are respected. The aim is to minimise the difference between

each aircraft’s actual and most economical landing times.

Assignment Problem. Any problem where a set of items must be assigned one or more

resources, subject to certain constraints.

Asymmetric Travelling Salesman Problem. Equivalent to a symmetric TSP with

the exception that distances between a pair of nodes may differ depending on the

direction of travel.

ATSP. See Asymmetric Travelling Salesman Problem.

Bin Packing Problem. An assignment problem in which a number of items of different

weights must be packed into a number of bins all with the same capacity. The aim

is to minimise the number of bins required.
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BPP. See Bin Packing Problem.

BUS. See Bus Driver Scheduling.

Bus Driver Scheduling. A problem in which drivers must be assigned to periods of work

such that all work is covered. The aim is to minimise the number of drivers required.

Car Sequencing Problem. An assignment problem in which a number of different car

models must be placed in a production sequence. The aim is separate cars of the

same model by the greatest distance possible.

Constraint Satisfaction Problem. An assignment problem in which a number of vari-

ables must be assigned values such that a number of logical constraints involving those

variables are satisfied, or that the number of unsatisfied constraints is minimised.

CSatP. See Constraint Satisfaction Problem.

CSeqP. See Car Sequencing Problem.

CStockP. See Cutting Stock Problem.

Cutting Stock Problem. An assignment problem in which a number of items must be

cut from stocks of the same length. The aim is to minimise the number of stocks

required.

FAP. See Frequency Assignment Problem.

Flow Shop Problem. A scheduling problem in which a number of jobs must be processed

on each of a number of machines in the same order. The aim is to determine the order

in which jobs are given access to each machine such that the makespan is minimised.

Frequency Assignment Problem. An assignment problem in which a number of re-

quests for frequencies in a radio network must be serviced. The aim is to minimise

the amount of interference between radio links.

FSP. See Flow Shop Problem.

GAP. See Generalised Assignment Problem.

GCP. See Graph Colouring Problem.

Generalised Assignment Problem. An archetypal assignment problem in which each

of a number of tasks must be assigned to one of a number of agents such that each

agent’s capacity can support the tasks assigned. The aim is either to minimise the

cost or maximise the profit of the assignments made.

185



GPP. See Graph Partitioning Problem.

Graph Colouring Problem. An assignment problem in which the nodes of a graph must

be assigned colours such that no two adjacent nodes have the same colour. The

problem may be posed with the aim of either minimising the number of colours

required to produce a feasible colouring or minimising the number of like-coloured

adjacent nodes for a given number of colours.

Graph Partitioning Problem. An assignment problem in which a graph must be par-

titioned into two sets of equal size. The aim is to minimise the number of edges

between nodes in different partitions.

GSP. See Group-shop Scheduling Problem.

Group-shop Scheduling Problem. A generalisation of the JSP and OSP in which each

job’s operations are partitioned into groups such that pre-existing precedence con-

straints exist between groups, but not between operations within each group. The

aim is to minimise the makespan.

Job-shop Scheduling Problem. A scheduling problem in which a number operations,

each of which must be processed on exactly one of a number of machines, must be

scheduled for processing. Operations are partitioned into jobs and the processing

order of operations within each job is specified a priori. The aim is to minimise the

makespan.

JSP. See Job-shop Scheduling Problem.

KCTP. See k-Cardinality Tree Problem.

k-Cardinality Tree Problem. A subset problem where a tree consisting of k edges must

be formed by taking a subset of edges from an edge- or node-weighted graph. The

aim is to minimise the weight of included edges or nodes.

Linear Ordering Problem. A problem in which a number of items must be ordered

such that the cost due to certain items preceding certain other items is minimised.

LOP. See Linear Ordering Problem.

Maximum Clique Problem. A subset problem in which a clique (i.e., a set of fully

connected nodes) is sought in a graph. The aim is to maximise the size of the clique.

MCP. See Maximum Clique Problem.

MKP. See Multiple Knapsack Problem.
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Multiple Knapsack Problem. A subset problem in which a subset of items is sought

from some larger set such that their weights do not exceed the capacities of a number

of knapsacks. Items often represent projects and knapsacks available resources. The

aim is to maximise the profit from the included items/projects.

NETSYNTH. See Network Synthesis Problem.

Network Synthesis Problem. A problem in which a network topology must be devised,

followed by the allocation of bandwidth between pairs of nodes in the network, such

that the required bandwidth between nodes is available. The aim is to minimise

both the cost of constructing links between nodes and the ongoing costs of using the

allocated bandwidth on those links.

NPP. See Number Partitioning Problem.

NQP. See N-Queens Problem.

N-Queens Problem. An assignment problem in which N queens must be placed on an

N -by-N chess board such that no two queens can attack each other.

Number Partitioning Problem. An assignment problem in which a set of numbers

must be split into two partitions of equal size. The aim is to minimise the difference

between the sums of numbers in each partition.

OSP. See Open-shop Scheduling Problem.

Open-shop Scheduling Problem. A scheduling problem in which a number operations,

each of which must be processed on exactly one of a number of machines, must

be scheduled for processing. Operations are partitioned into jobs, but the order of

operations within each job is not specified a priori. The aim is to minimise the

makespan.

PAP. See Processor Allocation Problem.

Processor Allocation Problem. An assignment problem in which a number of processes

must be assigned to processors in a multi-processing computing environment. The

aim is to minimise the amount of inter-processor communication.

QAP. See Quadratic Assignment Problem.

Quadratic Assignment Problem. An assignment problem in which each of n facilities

must be assigned to exactly one of n locations such that the product of the distance

and flow between facilities is minimised.
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Scheduling Problem. A combinatorial optimisation problem where operations must be

scheduled for processing on machines. Typically the aim is to minimise the makespan,

or time to complete all jobs.

SCP. See Set Covering Problem.

SCSP. See Shortest Common Supersequence Problem.

Sequential Ordering Problem. A problem in which a Hamiltonian path of minimum

weight is sought in a node- and edge-weighted graph.

Set Covering Problem. A subset problem in which a subset of columns, each of which

covers some of a number of constraints, must be chosen from some larger set such

that all constraints are covered. The aim is to minimise the cost of the columns used.

Set Partitioning Problem. A subset problem in which a subset of columns, each of

which covers some of a number of constraints, must be chosen from some larger set

such that each constraint is covered by exactly one column. The aim is to minimise

the cost of the columns used.

Shortest Common Supersequence Problem. A problem in which a string that is a

supersequence of a number of other strings (i.e., any of those other strings may be

obtained by deleting characters from the solution string) is sought. The aim is to

minimise the length of the supersequence.

Single Machine Total Tardiness Problem. A scheduling problem in which a number

of operations, all requiring the same machine, must be placed in a sequence. The

aim is to minimise the total amount by which operations are late.

SMTTP. See Single Machine Total Tardiness Problem.

SOP. See Sequential Ordering Problem.

SPP. See Set Partitioning Problem.

Subset Problem. Any problem where a subset of items from some larger set is sought,

subject to certain constraints.

Symmetric Travelling Salesman Problem. A problem in which a Hamiltonian circuit

of minimum weight is sought in an undirected edge-weighted graph.

TSP. See Symmetric Travelling Salesman Problem.

UCTP. See University Course Timetabling Problem.
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University Course Timetabling Problem. An assignment problem in which events

such as classes must be assigned to timeslots. The problem considered in this thesis

contains a number of soft constraints that relate to good timetable design, with the

aim of minimising the number of soft constraint violations.

Vehicle Routing Problem. A problem in which a number of customers must serviced

by a number of vehicles with fixed capacities such that either the total number of

vehicles required or the total distance travelled/time taken to service all customisers

is minimised.

VRP. See Vehicle Routing Problem.
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Appendix B

Objective Functions Used in

Pheromone Representation Selection

The algorithm for automatically selecting pheromone representations presented in Chap-

ter 6 was applied to the following problem models. Note that problem constraints have

been omitted as the algorithm does not consider these.

Bin Packing Problem The following objective function minimises the amount of con-

straint violation, rather than the number of bins used.

Minimise
M∑
i=1

max

0,

|B(i)|∑
j=1

w
(
A(i, j)

)
−Wmax

 (B.1)

Where:

B(i) = {j ∈ Cit | k ∈ [1, N ], s[k] = i, j = I(k)} is the set of items assigned

to bin i, where k is an integer and I(k) is the ith item to be assigned during

construction.

A(i, j) ∈ B(i) is the jth item assigned to bin i.

Wmax is the maximum weight each bin may hold.

w(i) is the weight of item i.

M is the number of bins.

N is the number of items.

Car Sequencing Problem Based on the car sequencing problem described by Smith

et al. (1996).
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Minimise
M∑
i=1

|D(i)|−1∑
j=1

|D(i)|∑
k=j+1

P
(
|A(i, k)− A(i, j)|, i

)
(B.2)

Where:

D(i) = {j ∈ Cit | k ∈ [1, N ], s[k] = i, j = I(k)} is the set of sequence positions

assigned to model i, where k is an integer and I(k) is the ith sequence position

to be assigned during construction.

A(i, j) ∈ D(i) is the jth sequence position assigned to model i.

P (i, j) is the separation penalty for the jth model separated by i places in the

sequence.

N is the number of cars.

M is the number of models.

Cutting Stock Problem The following objective function minimises the amount of con-

straint violation, rather than the number of stocks used.

Minimise
M∑
i=1

|S(i)|∑
j=1

r
(
A(i, j)

)
−Rmax (B.3)

Where:

S(i) = {j ∈ Cit | k ∈ [1, N ], s[k] = i, j = I(k)} is the set of pieces to be cut

from stock i, where k is an integer and I(k) is the ith piece to be assigned during

construction.

A(i, j) ∈ S(i) is the jth piece assigned to stock i.

Rmax is the length of each stock.

r(i) is the length of stock required by piece i.

N is the number of pieces to be produced.

M is the number of stocks available.

Frequency Allocation Problem The Frequency Allocation Problem involves the as-

signment of frequencies to requests (i.e., links in a radio network). The following

objective function minimises the degree of interference resulting from the frequencies

assigned.

Minimise

N−1∑
i=1

N∑
j=i+1

max
(
0, reqddist

(
I(i), I(j)

)
−
∣∣s[i]− s[j]

∣∣) (B.4)
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Where:

I(i) ∈ Cit is the ith request assigned a frequency.

s[i] ∈ Cres is the frequency assigned to request I(i).

N is the number of frequency requests.

M is the number of frequencies available.

reqddist(i, j) is the minimum distance required between frequencies assigned to

requests i and j, below which interference will occur.

max(i, j) returns i if i > j, j otherwise.

Generalised Assignment Problem The following formulation of the GAP is as a max-

imisation problem, which corresponds to the instances studied. If the instance is a

minimisation problem then the objective changes to minimise and the interpretation

of C(i, j) is the cost of assigning item i to agent j.

Maximise
N∑

i=1

C
(
I(i), s[i]

)
(B.5)

Where:

C(i, j) is the profit of assigning item i to agent j.

I(i) ∈ Cit is the ith task assigned an agent.

s[i] ∈ Cres is the agent assigned to task I(i).

N is the number of tasks.

M is the number of agents.

Graph Colouring Problem The following objective function minimises the number of

constraint violations, rather than the number of colours used.

Minimise

M∑
i=1

|C(i)|−1∑
j=1

|C(i)|∑
k=j+1

edge
(
A(i, j), A(i, k)

)
(B.6)

Where:

C(i) = {j ∈ Cit | k ∈ [1, N ], s[k] = i, j = I(k)} is the set of nodes assigned

colour i, where k is an integer and I(k) is the ith node to be assigned during

construction.

A(i, j) ∈ C(i) is the jth node assigned colour i.
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M is the number of colours available.

N is the number of nodes.

edge(i, j) is 1 if there is an edge connecting nodes i and j, 0 otherwise.

Graph Partitioning Problem

Minimise

N
2∑

i=1

N
2∑

j=1

edge
(
A(1, i), A(2, j)

)
(B.7)

Where:

A(i, j) ∈ Cit is the jth node assigned to partition i.

edge(i, j) is 1 if nodes i and j are adjacent, 0 otherwise.

N is the number of nodes.

Group Shop Scheduling Problem The pheromone selection algorithm was applied to

the definition of the term t(i).

Minimise max
i=1,...,N

t(s[i]) (B.8)

Where:

s[i] ∈ C is the operation at the ith position in the solution sequence.

t(i) = maxj∈R(i) t(j) + p(i) is the completion time of operation i.

R(i) = {j ∈ C | loc(j) < loc(i), M(i) = M(j) ∨ G(i) = G(j)} is the set of

operations related to and preceding operation i, where loc(i) is the position of

operation i in the sequence, M(i) is the machine required by i and G(i) is the

group to which i belongs.

p(i) is the processing time of i.

maxi=1,...,N f(i) returns the maximum value of the function f(i) ∀ i = 1, . . . , N .

N is the number of operations.

Multiple Knapsack Problem

Maximise

|s|∑
i=1

c(s[i]) (B.9)

Where:

193



|s| is the size of the solution.

s[i] ∈ C is the ith item included.

c(i) is the profit of including item i.

N is the number of items.

Linear Ordering Problem

Minimise
N−1∑
i=1

N∑
j=i+1

c(s[i], s[k]) (B.10)

Where:

s[i] ∈ C is the ith item in the sequence.

c(i, j) is the cost of placing item i before item j in the sequence.

N is the number of items.

Maximum Clique Problem This formulation minimises the number of constraint vio-

lations for a give clique size, rather than the size of the clique.

Minimise
M2 −M

2
−

M−1∑
i=1

M∑
j=i+1

edge(s[i], s[j]) (B.11)

Where:

s[i] ∈ C is the ith node in the solution sequence s.

edge(i, j) is 1 if nodes i and j are adjacent, 0 otherwise.

N is the number of nodes.

M is the clique size.

Number Partitioning Problem

Minimise

∣∣∣∣∣∣
|P (1)|∑
i=1

A(1, i)−
|P (2)|∑
i=1

A(2, i)

∣∣∣∣∣∣ (B.12)

Where:

P (i) = {j ∈ Cit | k ∈ [1, N ], s[k] = i, j = I(k)} is the set of numbers assigned

to partition i, where k is an integer and I(k) is the ith number to be assigned

during construction.
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A(i, j) ∈ P (i) is the jth number assigned to partition i.

N is the number of numbers.

N Queens Problem

Minimise

N−1∑
i=1

N∑
j=i+1

attacks(s[i], s[j]) (B.13)

Where:

s[i] ∈ Cres is the ith board position assigned to queen i.

attacks(i, j) is 1 if queens at positions i and j can attack each other, 0 otherwise.

N is the number of queens.

Processor Allocation Problem

Minimise
M∑
i=1

|P (i)|∑
j=1

M∑
k=i+1

|P (k)|∑
l=1

c
(
A(i, j), A(k, l)

)
(B.14)

Where:

P (i) = {j ∈ Cit | k ∈ [1, N ], s[k] = i, j = I(k)} is the set of processes assigned

to processor i, where k is an integer and I(k) is the ith process to be assigned

during construction.

A(i, j) ∈ P (i) is the jth process assigned to processor i.

N is the number of processes.

M is the number of processors.

c(i, j) is communication cost between processes i and j.

Quadratic Assignment Problem

Minimise
N−1∑
i=1

N∑
j=i+1

f
(
I(i), I(j)

)
· d(s[i], s[j]) (B.15)

Where:

I(i) ∈ Cit is the ith facility assigned.

s[i] ∈ Cres is the location assigned to facility I(i).

f(i, j) is the flow between facilities i and j.

d(i, j) is the distance between locations i and j.
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N is the number of facilities/locations.

Set Covering/Partitioning Problems These problems differ only in their constraints,

which are not presented here. In both problems the term column is typically used

instead of the generic term item used with regards to subset problems elsewhere in

the thesis.

Minimise

|s|∑
i=1

c(s[i]) (B.16)

Where:

|s| is the size of the solution.

s[i] ∈ C is the ith item included.

c(i) is the cost of including column i.

N is the number of columns.

Single Machine Total Tardiness Problem

Minimise
N∑

i=1

max

(
0,

i∑
j=1

p(s[j])− d(s[i])

)
(B.17)

Where:

s[i] ∈ C is the ith job to be processed in the sequence.

p(i) is the processing time of job i.

d(i) is the due date of job i.

max(i, j) returns i if i > j, j otherwise.

N is the number of jobs.

Travelling Salesman Problem

Minimise
N∑

i=1

d(s[i], s[pred(i, 1, 1, N)]) (B.18)

Where:

s[i] ∈ C is the ith city in the solution sequence.

pred(i, k, l, u) returns the value i−k unless i−k < l, in which case u is returned.
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N is the number of cities.

Vehicle Routing Problem The following formulation is for the minimisation of the dis-

tance travelled only and assumes that a vehicle returning to the depot is modelled

as an extra node in the sequence.

Minimise

N∑
i=1+1

d(s[i], s[i− 1]) (B.19)

Where:

s[i] ∈ C is the ith customer visited in the sequence (or the depot).

N is the number of customers plus the number of artificial depot nodes.
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Appendix C

Details of Non-benchmark Problem

Instances Used

This appendix provides details of those instances studied that are not available in bench-

mark problem libraries. The problems are arranged according to the first chapter in which

they are extensively studied.

Chapter 3

jsp2-2, a two job, two machine, four operation JSP instance. This JSP instance

was described by Blum and Sampels (2002b), and has the following specification.

The set of operations

O = {1, 2, 3, 4},

the set of jobs

J = {J1 = {1, 2}, J2 = {3, 4}},

with 1 ≺ 2, 3 ≺ 4, the set of machines

M = {M1 = {1, 4}, M2 = {2, 3}},

and processing times of the operations are p(1) = p(4) = 10 and p(2) = p(3) = 20.

i ≺ j indicates i must be processed before j. The optimal solution cost is 40.

3 Agent, 8 Task GAP instance. Number of agents n = 3, number of tasks m = 8.

The cost of assigning task i to agent j is Cij where

C =

 17 21 22 18 24 15 20 18

23 16 21 16 17 16 19 25

16 20 16 25 24 16 17 19
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the resource required by task i when assigned to agent j is Rij where

R =

 8 15 14 23 8 16 8 25

15 7 23 22 11 11 12 10

21 20 6 22 24 10 24 9


and the capacities of agents b = (35, 35, 35).

Chapter 5

jsp3-3 and osp3-3 JSP and OSP instances. These instances, based on similar instances

described by Blum and Sampels (2002a), have the following specifications. In both

instances the set of operations

O = {1, . . . , 9},

the set of jobs

J = {J1 = {1, 2, 3}, J2 = {4, 5, 6}, J3 = {7, 8, 9}},

the set of machines

M = {M1 = {1, 5, 9}, M2 = {2, 6, 7}, M3 = {3, 4, 8}},

and the processing times of operations is p(1) = p(5) = p(9) = 10, p(2) = p(6) =

p(7) = 20 and p(3) = p(4) = p(8) = 30. In jsp3-3, 1 ≺ 2 ≺ 3, 4 ≺ 5 ≺ 6 and

7 ≺ 8 ≺ 9, while osp3-3 has no precedence constraints.

The optimal solution cost for both instances is 90.
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Appendix D

Tables of Results

This appendix contains tables of all data summarised and described in Chapter 7, organised

by problem type, in the same order presented in that chapter. There are two tables for

the TSP, the first for when local search was not used and the second for those cases where

it was. These are followed by one table each for the MKP, GSP, QAP, GAP and CSeqP.

Each table starts on a new page. Tables are broken across pages such that results for each

instance appear on the same page. Table headings indicate if heuristic information or local

search were used. The symbol η is used to denote the use of heuristic information, while

LS is used to denote the use of local search.

Each row reports the minimum (labelled min), median (labelled med) and maximum

(labelled max) RPD across all random seeds for a single parameter combination. That

is, for each combination of instance, algorithm (labelled alg.), pheromone type, heuristic

information, local search and assignment order (labelled assign. order). Results for the

GAP also include the percentage of feasible solutions produced (labelled % feas.).
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Table D.1: TSP results, no local search.

no η, no LS η, no LS

Instance Alg. Pheromone min med max min med max

gr24 ACOundir — 79.2 178.9 261.4 12.7 83.8 197.6

ACS C× C 0 20.8 243.5 0 0.5 147.9

ACS C× P 28.9 70.1 241.4 10.6 35.8 158.2

MMAS C× C 14.8 100.6 235.1 0 3.9 147.9

MMAS C× P 42.6 155.6 267.9 0 49.3 172.9

hk48 ACOundir — 188.8 329.0 438.2 47.3 129.5 244.5

ACS C× C 54.0 140.5 422.9 0 7.5 216.7

ACS C× P 81.9 132.8 424.1 19.9 61.1 216.2

MMAS C× C 84.7 183.3 407.4 0 0.7 194.9

MMAS C× P 106.7 237.5 425.6 6.2 56.5 221.2

eil51 ACOundir — 186.9 288.0 379.3 43.2 132.6 233.1

ACS C× C 56.1 127.7 340.1 1.2 3.5 192.7

ACS C× P 74.2 123.9 360.1 32.6 64.8 213.1

MMAS C× C 82.4 167.1 350.0 0.2 2.6 196.7

MMAS C× P 106.1 219.5 368.5 13.1 61.7 211.0

st70 ACOundir — 316.7 442.2 555.0 68.9 152.0 268.9

ACS C× C 118.5 220.1 521.8 1.3 7.3 209.9

ACS C× P 139.3 211.0 551.6 49.8 90.8 260.9

MMAS C× C 153.5 262.4 519.0 0.1 3.0 218.7

MMAS C× P 182.1 323.0 543.9 24.1 83.6 249.2

eil76 ACOundir — 267.3 369.1 455.2 79.9 158.4 248.9

ACS C× C 104.1 185.5 425.1 2.4 4.8 218.8

ACS C× P 104.1 179.4 433.6 46.7 82.0 235.5

MMAS C× C 133.6 221.4 437.5 0.6 2.6 218.8

MMAS C× P 137.2 258.6 446.7 25.3 75.5 234.6

kroA100 ACOundir — 507.9 704.2 862.0 99.4 192.8 316.2

ACS C× C 240.4 363.9 831.5 3.6 20.2 283.2

ACS C× P 223.1 345.5 851.4 75.5 122.3 315.7

MMAS C× C 268.4 423.9 831.5 0.2 3.8 283.6

MMAS C× P 314.6 491.0 846.6 44.1 122.1 339.3

d198 ACOundir — 891.0 1109.4 1283.2 90.9 164.3 296.9

ACS C× C 415.6 597.1 1248.4 5.1 29.0 235.3

ACS C× P 374.6 512.4 1248.5 74.3 108.6 267.5

MMAS C× C 455.6 665.1 1249.6 2.9 12.2 236.4

MMAS C× P 402.2 584.4 1259.5 64.8 120.7 299.9

lin318 ACOundir — 1139.7 1299.2 1451.8 189.2 293.7 432.0

ACS C× C 756.4 917.0 1443.9 8.5 19.1 370.3

ACS C× P 626.2 787.3 1451.2 172.8 238.4 464.7

MMAS C× C 825.1 967.3 1420.8 6.5 9.4 368.3

MMAS C× P 694.2 882.5 1419.9 154.1 245.2 471.7

pcb442 ACOundir — 40.6 54.3 67.4 59.9 49.9 39.3

ACS C× C 3.7 18.2 64.9 89.1 85.5 42.2

ACS C× P 15.7 0.8 65.1 66.2 59.9 30.4

MMAS C× C 8.8 22.8 65.8 89.3 86.0 39.4

MMAS C× P 5.2 10.7 64.7 66.7 58.0 30.7

att532 ACOundir — 1574.1 1750.3 1930.2 264.0 358.6 466.2

ACS C× C 1114.3 1290.1 1891.9 11.1 31.6 433.6

ACS C× P 888.3 1082.7 1889.9 225.1 285.4 554.6

MMAS C× C 1166.8 1341.6 1888.2 7.6 22.6 423.5

MMAS C× P 905.5 1103.1 1871.3 213.2 304.4 524.6
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Table D.2: TSP results, with local search.

no η, LS η, LS

Instance Alg. Pheromone min med max min med max

gr24 ACOundir — 0 3.7 23.3 0 3.7 25.6

ACS C× C 0 0 16.6 0 0 18.2

ACS C× P 0 3.5 24.3 0 2.7 22.3

MMAS C× C 0 0 17.8 0 0 17.7

MMAS C× P 0 3.7 30.4 0 3.3 23.7

hk48 ACOundir — 0 5.5 18.2 0 5.3 20.6

ACS C× C 0 0 14.4 0 0 13.6

ACS C× P 0 5.5 18.7 0 4.6 16.7

MMAS C× C 0 0 15.3 0 0 16.1

MMAS C× P 0 5.5 20.3 0 4.7 17.6

eil51 ACOundir — 0 6.1 21.4 0 5.9 20.4

ACS C× C 0 0 14.6 0 0 13.1

ACS C× P 0 6.1 21.8 0 5.4 18.8

MMAS C× C 0 0.2 17.6 0 0 13.6

MMAS C× P 0 6.1 21.4 0 5.6 20.0

st70 ACOundir — 0 5.8 21.0 0 5.5 20.6

ACS C× C 0 0 17.9 0 0 15.1

ACS C× P 0 5.6 23.0 0 4.9 20.6

MMAS C× C 0 0 20.0 0 0 15.7

MMAS C× P 0 5.6 23.3 0 5.0 22.4

eil76 ACOundir — 0.2 8.4 20.1 0 8.0 20.4

ACS C× C 0 0 17.5 0 0 13.8

ACS C× P 0.6 8.2 20.6 0 7.4 19.0

MMAS C× C 0 0 17.5 0 0 17.1

MMAS C× P 0.2 8.2 20.8 0.2 7.4 19.7

kroA100 ACOundir — 0 6.6 21.9 0 6.3 22.2

ACS C× C 0 0 21.0 0 0 19.8

ACS C× P 0 6.5 22.7 0 4.9 21.1

MMAS C× C 0 0 18.2 0 0 17.8

MMAS C× P 0 6.5 22.2 0 5.1 21.5
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Table D.3: MKP results.

no η η

Instance Alg. Pheromone min med max min med max

mknap1-6item ACOundir — 0 36.8 36.8 0 18.4 36.8

ACS C 0 0 36.8 0 0 36.8

ACS Sp × C; C2 0 2.6 36.8 0 2.6 36.8

ACS C× C 0 0 36.8 0 0 36.8

ACS C× P 0 0 36.8 0 0 36.8

MMAS C 0 13.2 36.8 0 0 36.8

MMAS Sp × C; C2 0 28.9 36.8 0 18.4 36.8

MMAS C× C 0 31.6 36.8 0 2.6 36.8

MMAS C× P 0 31.6 36.8 0 2.6 36.8

mknap1-10item ACOundir — 0 20.3 47.9 0 0.6 47.9

ACS C 0 0 47.9 0 0 33.5

ACS Sp × C; C2 0 1.5 47.9 0 0 47.9

ACS C× C 0 0 47.9 0 0 29.2

ACS C× P 0 0 47.9 0 0 33.5

MMAS C 0 0 47.9 0 0 34.8

MMAS Sp × C; C2 0 9.8 47.9 0 0 47.9

MMAS C× C 0 9.8 47.9 0 0 47.9

MMAS C× P 0 9.8 47.9 0 0 34.8

mknap1-15item ACOundir — 0 21.2 55.2 0 3.1 55.2

ACS C 0 0.2 48.4 0 0 32.0

ACS Sp × C; C2 0 0 53.9 0 0 44.3

ACS C× C 0 0 49.8 0 0 41.6

ACS C× P 0 0 53.9 0 0 32.9

MMAS C 0 0.2 53.9 0 0 35.9

MMAS Sp × C; C2 0 3.1 55.2 0 0 55.2

MMAS C× C 0 14.3 55.2 0 0 55.2

MMAS C× P 0 13.1 55.2 0 0 44.7

mknap1-20item ACOundir — 0 38.2 64.4 0 7.2 45.7

ACS C 0 0.5 57.0 0 0 32.8

ACS Sp × C; C2 0 3.8 60.4 0 0 40.9

ACS C× C 0 0.3 61.2 0 0 30.6

ACS C× P 0 0.2 61.2 0 0 31.7

MMAS C 0 0.2 60.5 0 0 29.6

MMAS Sp × C; C2 0 7.5 64.4 0 0 47.9

MMAS C× C 0 12.1 64.4 0 0 39.8

MMAS C× P 0 9.3 63.1 0 0 40.9

mknap1-28item ACOundir — 0 25.8 51.3 0.1 7.5 28.2

ACS C 0 1.5 46.1 0.2 0.2 17.9

ACS Sp × C; C2 0 0 46.1 0 0.2 17.9

ACS C× C 0 0 46.1 0.1 0.2 20.7

ACS C× P 0 0.1 48.7 0 0.2 17.9

MMAS C 0 0 49.5 0.1 0.2 22.8

MMAS Sp × C; C2 0 1.3 47.4 0 0.2 22.9

MMAS C× C 0 15.5 50.9 0 0.2 25.7

MMAS C× P 0 9.2 50.0 0 0.2 26.9

continues. . .
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Table D.3: MKP results (continued).

no η η

Instance Alg. Pheromone min med max min med max

mknap1-39item ACOundir — 0.3 22.3 43.1 1.5 14.6 37.4

ACS C 0.5 0.9 37.1 0.8 5.5 22.8

ACS Sp × C; C2 0.1 1.7 42.4 0 3.7 29.9

ACS C× C 0.3 1.4 41.6 0 3.5 22.9

ACS C× P 0.3 1.4 39.5 0 0.6 35.0

MMAS C 0.3 1.7 38.5 0.6 6.1 34.7

MMAS Sp × C; C2 0.3 1.7 41.4 0 3.4 38.1

MMAS C× C 0.3 6.4 42.6 0 6.0 30.6

MMAS C× P 0.1 5.7 41.6 0 1.7 32.6

mknap1-50item ACOundir — 1.0 22.5 55.5 1.3 14.8 38.2

ACS C 0.5 1.4 48.2 0.7 5.2 23.0

ACS Sp × C; C2 0.2 0.8 48.2 0.6 1.6 35.7

ACS C× C 0.2 0.8 53.3 0 5.0 33.2

ACS C× P 0.4 0.7 48.2 0.2 1.6 31.4

MMAS C 0.2 0.8 50.9 1.6 5.2 27.5

MMAS Sp × C; C2 0.2 0.8 52.7 0.8 5.2 32.2

MMAS C× C 0.2 9.9 54.9 0.6 3.9 38.1

MMAS C× P 0.1 5.5 53.5 0.3 1.7 33.3

mknapcb1-0.5-1 ACOundir — 7.6 16.9 33.4 5.6 14.3 30.9

ACS C 2.8 9.0 24.8 0.5 3.7 20.9

ACS Sp × C; C2 3.5 11.1 26.7 1.0 6.6 22.0

ACS C× C 1.6 3.7 28.4 1.6 2.1 24.2

ACS C× P 1.5 3.1 30.3 1.4 2.1 26.1

MMAS C 1.7 7.2 29.7 0.5 1.5 23.4

MMAS Sp × C; C2 2.6 9.2 28.3 0.9 4.5 23.0

MMAS C× C 5.2 13.4 30.6 1.9 9.1 26.2

MMAS C× P 0.7 7.2 31.5 0.5 3.8 25.5

mknapcb1-0.5-2 ACOundir — 7.2 17.8 34.3 5.2 14.1 30.6

ACS C 2.9 9.5 27.6 0 2.8 24.1

ACS Sp × C; C2 3.7 11.5 27.5 0.6 5.9 24.8

ACS C× C 2.6 3.8 28.2 1.4 1.8 27.7

ACS C× P 1.7 3.3 29.3 0.6 1.7 25.8

MMAS C 1.8 8.1 28.4 0 1.1 24.1

MMAS Sp × C; C2 2.1 9.8 27.9 0 4.4 24.9

MMAS C× C 4.4 13.9 32.6 1.4 8.2 27.2

MMAS C× P 0.8 7.0 32.0 0 3.2 31.2

mknapcb1-0.5-3 ACOundir — 7.1 16.8 33.3 5.8 14.7 31.1

ACS C 2.0 8.5 28.2 0.4 4.1 22.5

ACS Sp × C; C2 3.0 10.6 26.7 1.1 6.5 23.0

ACS C× C 2.0 2.7 28.1 1.2 1.8 23.9

ACS C× P 1.7 2.3 29.2 0.8 2.0 24.0

MMAS C 0.8 6.9 27.3 0.4 3.6 23.0

MMAS Sp × C; C2 2.2 8.9 27.8 0.6 5.0 26.1

MMAS C× C 3.8 12.9 31.7 1.9 9.4 28.4

MMAS C× P 1.0 7.0 31.2 0.4 4.4 27.6

continues. . .
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Table D.3: MKP results (continued).

no η η

Instance Alg. Pheromone min med max min med max

mknapcb1-0.25-1 ACOundir — 10.8 26.1 51.7 8.1 23.3 52.0

ACS C 1.4 10.6 40.4 0 7.0 35.3

ACS Sp × C; C2 1.4 13.5 45.8 2.0 11.4 36.3

ACS C× C 2.4 4.3 44.9 2.0 3.6 38.0

ACS C× P 1.4 3.1 42.1 1.1 2.6 41.3

MMAS C 0.5 7.9 43.9 0.5 5.3 38.2

MMAS Sp × C; C2 1.5 11.8 41.4 1.5 10.2 41.7

MMAS C× C 1.1 14.1 47.0 1.2 9.7 41.0

MMAS C× P 0 6.1 45.7 0.7 5.5 41.8

mknapcb1-0.25-2 ACOundir — 11.4 25.9 47.4 9.5 23.6 46.3

ACS C 1.9 11.7 40.2 0.3 2.3 34.2

ACS Sp × C; C2 3.2 14.6 40.4 1.8 11.7 36.1

ACS C× C 2.9 5.3 41.5 1.0 3.0 41.3

ACS C× P 0.6 2.5 44.0 0.6 3.3 37.8

MMAS C 1.0 9.0 42.9 0.3 1.8 36.4

MMAS Sp × C; C2 1.5 12.7 41.4 1.1 10.1 40.1

MMAS C× C 1.4 14.4 44.3 1.6 9.9 42.9

MMAS C× P 0 6.4 44.0 0.3 5.4 40.3

mknapcb1-0.25-3 ACOundir — 12.6 27.9 51.1 9.9 24.5 48.2

ACS C 1.5 11.4 39.7 0.1 1.9 33.0

ACS Sp × C; C2 3.2 14.9 48.9 1.2 11.0 35.8

ACS C× C 3.6 5.8 44.4 0.7 3.3 39.6

ACS C× P 1.7 3.3 42.4 0.4 2.3 43.6

MMAS C 0.2 7.8 46.0 0.1 1.4 39.5

MMAS Sp × C; C2 1.3 12.6 46.1 0.3 9.6 43.7

MMAS C× C 0.6 14.5 44.0 0.2 9.1 41.1

MMAS C× P 0.2 6.0 45.0 0.1 5.0 43.7
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Table D.4: GSP results.

no η η

Instance Alg. Pheromone min med max min med max

ft10-1 ACOundir — 32.8 96.6 193.1 30.8 101.2 202.6

ACS Sp × C; C2 9.6 21.5 177.8 12.0 24.7 165.8

ACS C× C 46.9 127.0 299.1 51.0 121.1 299.1

ACS C× P 31.3 39.1 193.7 21.8 45.7 192.6

MMAS Sp × C; C2 12.3 22.7 168.7 10.6 26.2 165.8

MMAS C× C 46.7 207.5 329.6 48.9 194.5 320.4

MMAS C× P 35.6 98.2 204.0 31.8 100.0 193.4

ft10-5 ACOundir — 50.5 131.6 262.2 50.8 130.5 276.7

ACS Sp × C; C2 25.1 33.4 209.1 14.4 23.5 222.2

ACS C× C 43.3 115.4 406.6 52.1 71.0 376.6

ACS C× P 28.9 42.6 289.8 27.5 42.8 259.8

MMAS Sp × C; C2 9.9 25.9 214.6 11.6 17.5 208.0

MMAS C× C 67.4 184.1 327.1 62.8 180.1 327.0

MMAS C× P 53.9 138.2 278.1 43.7 122.1 255.9

ft10-10 ACOundir — 48.5 123.4 252.7 47.3 121.4 255.4

ACS Sp × C; C2 21.5 28.2 231.8 10.8 19.1 224.9

ACS C× C 44.6 109.5 238.8 30.7 100.5 231.1

ACS C× P 21.2 28.2 229.3 21.5 28.1 208.7

MMAS Sp × C; C2 6.3 54.4 233.1 5.5 13.6 213.0

MMAS C× C 42.4 111.1 244.9 36.9 104.6 222.3

MMAS C× P 35.4 97.1 228.4 20.8 82.1 226.0

la38-1 ACOundir — 54.0 115.9 217.7 53.6 124.4 236.7

ACS Sp × C; C2 19.1 24.2 177.5 16.0 27.4 192.6

ACS C× C 70.0 528.0 739.8 69.1 509.7 724.8

ACS C× P 48.0 73.8 281.2 53.3 97.7 272.0

MMAS Sp × C; C2 13.0 20.2 174.2 10.1 19.1 192.6

MMAS C× C 58.6 505.4 702.4 72.7 496.5 690.6

MMAS C× P 62.2 131.1 241.1 63.8 134.3 244.1

la38-8 ACOundir — 83.5 183.1 323.7 97.2 194.0 340.7

ACS Sp × C; C2 40.8 85.3 297.9 26.2 41.7 276.9

ACS C× C 117.0 455.9 769.8 112.8 465.1 761.5

ACS C× P 61.2 83.5 392.5 61.1 79.1 400.4

MMAS Sp × C; C2 13.8 33.5 297.9 18.0 26.4 271.7

MMAS C× C 101.3 329.6 527.3 116.2 350.4 536.1

MMAS C× P 108.9 212.3 355.2 96.0 196.5 364.6

la38-15 ACOundir — 78.2 147.8 268.8 73.3 145.0 269.0

ACS Sp × C; C2 53.6 125.2 271.1 17.3 22.3 239.9

ACS C× C 74.8 140.8 251.2 66.7 134.9 239.3

ACS C× P 38.8 44.3 252.9 37.4 47.2 252.4

MMAS Sp × C; C2 15.2 54.3 237.3 12.2 19.6 225.1

MMAS C× C 69.2 139.1 255.7 68.7 132.9 238.6

MMAS C× P 52.0 102.9 249.2 31.5 91.2 248.7

whizzkids97-jsp ACOundir — 29.5 83.9 176.0 21.8 76.5 175.5

ACS Sp × C; C2 10.8 18.0 149.3 6.0 11.1 151.1

ACS C× C 36.3 50.4 225.5 34.3 49.6 230.3

ACS C× P 12.6 25.3 145.4 15.0 28.5 147.1

MMAS Sp × C; C2 2.3 12.0 153.2 0 7.5 156.2

MMAS C× C 39.4 113.1 226.8 36.1 111.0 232.4

MMAS C× P 24.3 72.5 162.4 14.1 67.6 153.7
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Table D.4: GSP results (continued).

no η η

Instance Alg. Pheromone min med max min med max

whizzkids97-gsp ACOundir — 69.9 137.5 241.8 65.5 130.7 237.5

ACS Sp × C; C2 44.8 50.5 215.8 38.0 42.0 200.2

ACS C× C 78.7 97.9 360.3 83.2 107.5 346.7

ACS C× P 48.8 57.8 246.1 52.2 64.6 223.5

MMAS Sp × C; C2 29.9 40.7 222.2 23.5 33.5 234.8

MMAS C× C 82.7 187.8 342.9 77.0 186.4 331.1

MMAS C× P 57.1 125.6 246.3 55.0 120.5 227.1

whizzkids97-osp ACOundir — 51.2 119.5 238.3 48.8 115.6 228.0

ACS Sp × C; C2 14.5 26.1 217.4 8.4 12.1 196.6

ACS C× C 49.6 111.9 215.3 45.9 107.7 222.7

ACS C× P 22.7 24.8 209.5 22.2 27.4 198.2

MMAS Sp × C; C2 0 16.9 205.5 2.6 10.6 212.1

MMAS C× C 50.1 112.7 234.3 43.5 107.9 225.3

MMAS C× P 30.3 78.4 226.6 20.3 73.4 209.0
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Table D.5: QAP results.

Assign. no LS LS

Instance order Alg. Pheromone min med max min med max

nug12 SFO ACOundir — 6.9 40.5 76.8 0 4.8 20.4

ACS Cit × Cres 4.8 22.5 68.9 0 0 15.9

ACS Cres × Cres 1.4 37.4 74.4 0 4.5 21.1

MMAS Cit × Cres 2.8 38.4 74.0 0 1.7 17.6

MMAS Cres × Cres 5.5 39.1 77.9 0 4.8 20.4

DRO ACOundir — 6.6 40.5 77.2 0 4.8 20.4

ACS Cit × Cres 0 33.6 72.7 0 0 19.0

MMAS Cit × Cres 1.4 38.4 76.1 0 1.4 18.0

HF ACOundir — 4.8 40.5 75.4 0 4.8 18.7

ACS Cit × Cres 5.2 17.6 74.4 0 0 18.0

ACS Cres × Cres 4.8 38.4 74.4 0 4.5 20.4

MMAS Cit × Cres 1.4 37.4 74.4 0 1.4 18.7

MMAS Cres × Cres 4.2 39.4 75.4 0 4.5 20.4

tai12a SFO ACOundir — 8.2 39.3 68.0 0 8.9 24.1

ACS Cit × Cres 6.0 29.4 65.7 0 2.8 19.5

ACS Cres × Cres 7.5 34.8 62.3 0 8.2 22.9

MMAS Cit × Cres 5.4 34.9 65.1 0 0 20.9

MMAS Cres × Cres 7.9 36.7 66.3 0 8.3 21.7

DRO ACOundir — 9.4 39.3 68.3 0 8.9 24.1

ACS Cit × Cres 6.3 36.0 65.0 0 4.4 22.3

MMAS Cit × Cres 5.6 35.8 67.4 0 0 21.3

HF ACOundir — 9.8 39.3 66.7 0 8.9 22.9

ACS Cit × Cres 5.9 33.8 62.5 0 2.1 20.9

ACS Cres × Cres 9.8 38.7 67.9 0 8.6 21.9

MMAS Cit × Cres 2.5 37.2 66.6 0 0 20.6

MMAS Cres × Cres 7.8 38.8 68.5 0 8.6 21.9

nug15 SFO ACOundir — 8.3 37.7 66.1 0 4.2 18.1

ACS Cit × Cres 4.9 21.9 62.4 0 0 15.7

ACS Cres × Cres 8.0 35.1 66.1 0 4.0 20.0

MMAS Cit × Cres 4.3 33.7 60.3 0 0.2 19.1

MMAS Cres × Cres 9.0 36.2 65.7 0 4.0 20.3

DRO ACOundir — 9.2 37.7 65.6 0 4.2 20.3

ACS Cit × Cres 4.7 30.8 61.7 0 0 16.5

MMAS Cit × Cres 6.3 34.6 63.0 0 0 18.8

HF ACOundir — 10.8 37.7 66.4 0 4.2 19.3

ACS Cit × Cres 3.1 19.3 61.4 0 0 15.7

ACS Cres × Cres 9.7 36.7 65.4 0 3.8 18.6

MMAS Cit × Cres 3.7 32.0 63.3 0 0 17.0

MMAS Cres × Cres 7.1 37.4 66.1 0 3.8 19.8

nug20 SFO ACOundir — 13.5 32.6 53.3 0 4.1 12.4

ACS Cit × Cres 5.7 22.0 48.6 0 0 9.7

ACS Cres × Cres 11.4 30.5 52.2 0 4.1 13.0

MMAS Cit × Cres 5.7 26.8 48.8 0 0 10.0

MMAS Cres × Cres 12.1 30.9 53.6 0 4.1 13.6

DRO ACOundir — 13.2 32.6 52.3 0 4.1 12.1

ACS Cit × Cres 9.2 27.6 49.3 0 1.2 11.4

MMAS Cit × Cres 7.7 27.6 48.9 0 0 10.4

HF ACOundir — 12.5 32.6 52.1 0 4.1 12.9

ACS Cit × Cres 5.5 20.7 50.9 0 0 11.1

ACS Cres × Cres 13.1 31.8 52.8 0 4.0 11.9

MMAS Cit × Cres 3.9 24.5 51.0 0 0 10.6

MMAS Cres × Cres 11.3 31.8 54.2 0 4.0 11.9
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Table D.5: QAP results (continued).

Assign. no LS LS

Instance order Alg. Pheromone min med max min med max

tai25a SFO ACOundir — 7.2 15.5 24.2 0.1 5.6 11.0

ACS Cit × Cres 5.0 13.7 22.9 0 5.3 10.3

ACS Cres × Cres 6.6 15.0 23.9 0 5.6 10.9

MMAS Cit × Cres 1.6 12.7 23.1 0.4 1.7 9.4

MMAS Cres × Cres 6.5 14.8 22.5 0.1 5.6 11.3

DRO ACOundir — 7.3 15.5 24.0 0 5.6 10.8

ACS Cit × Cres 6.5 15.1 23.8 0 5.3 10.4

MMAS Cit × Cres 5.8 14.4 23.8 0.4 1.6 10.2

HF ACOundir — 6.6 15.5 23.4 0.4 5.6 10.7

ACS Cit × Cres 5.5 14.0 23.0 0.4 5.2 10.8

ACS Cres × Cres 6.9 15.5 23.4 0.4 5.6 11.2

MMAS Cit × Cres 2.1 13.1 23.3 0.4 1.5 9.8

MMAS Cres × Cres 6.9 15.5 24.1 0 5.5 11.0

nug30 SFO ACOundir — 16.7 32.8 48.8 0 4.1 11.9

ACS Cit × Cres 10.5 23.1 46.5 0 0.6 10.1

ACS Cres × Cres 13.5 31.1 48.0 0 4.1 12.0

MMAS Cit × Cres 6.4 25.3 46.5 0 0.3 10.3

MMAS Cres × Cres 14.5 31.0 48.0 0 4.1 11.7

DRO ACOundir — 16.1 32.8 48.0 0 4.1 11.3

ACS Cit × Cres 13.3 28.5 44.5 0 0.7 9.9

MMAS Cit × Cres 11.2 27.1 44.9 0 0.3 9.3

HF ACOundir — 17.6 32.8 48.4 0 4.1 11.7

ACS Cit × Cres 10.5 20.9 45.9 0 0.1 10.3

ACS Cres × Cres 16.8 32.2 47.9 0 4.0 12.2

MMAS Cit × Cres 4.7 22.0 45.6 0 0.1 9.7

MMAS Cres × Cres 16.3 31.7 50.0 0 4.0 11.8

tai35a SFO ACOundir — 14.0 21.1 28.1 1.2 5.1 9.3

ACS Cit × Cres 12.4 19.8 28.8 1.1 4.9 8.9

ACS Cres × Cres 13.3 21.1 29.2 1.2 5.1 9.2

MMAS Cit × Cres 6.5 17.2 27.9 0 1.1 8.3

MMAS Cres × Cres 12.8 21.1 28.8 0.9 5.1 9.1

DRO ACOundir — 13.2 21.1 28.6 1.2 5.1 9.1

ACS Cit × Cres 13.7 20.7 28.4 0.9 4.9 8.9

MMAS Cit × Cres 10.4 19.6 27.7 0.5 1.3 8.7

HF ACOundir — 14.1 21.1 28.5 0.9 5.1 9.1

ACS Cit × Cres 11.6 19.8 28.2 0.4 5.0 9.1

ACS Cres × Cres 13.0 21.1 28.5 0.8 5.1 9.4

MMAS Cit × Cres 8.0 17.9 27.3 0.3 1.2 8.5

MMAS Cres × Cres 13.7 21.1 28.5 1.1 5.1 9.2

ste36a SFO ACOundir — 62.5 137.4 231.3

ACS Cit × Cres 36.3 42.6 203.8

ACS Cres × Cres 22.8 39.0 222.7

MMAS Cit × Cres 28.2 93.2 219.6

MMAS Cres × Cres 44.9 114.9 231.3

DRO ACOundir — 66.6 137.4 228.6

ACS Cit × Cres 12.4 18.3 209.7

MMAS Cit × Cres 38.1 95.5 207.9

HF ACOundir — 64.3 137.4 237.6

ACS Cit × Cres 30.5 44.4 204.2

ACS Cres × Cres 35.4 49.4 228.2

MMAS Cit × Cres 28.2 84.2 214.6

MMAS Cres × Cres 63.9 131.1 224.1
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Table D.5: QAP results (continued).

Assign. no LS LS

Instance order Alg. Pheromone min med max min med max

tho40 SFO ACOundir — 24.1 42.0 63.0

ACS Cit × Cres 14.7 24.4 54.4

ACS Cres × Cres 22.4 39.9 61.1

MMAS Cit × Cres 13.1 31.1 59.7

MMAS Cres × Cres 21.5 39.9 58.2

DRO ACOundir — 23.9 42.0 60.5

ACS Cit × Cres 17.8 36.0 56.4

MMAS Cit × Cres 16.3 34.4 54.7

HF ACOundir — 23.1 42.0 59.0

ACS Cit × Cres 12.6 19.0 56.6

ACS Cres × Cres 23.9 41.1 58.8

MMAS Cit × Cres 8.9 26.4 56.9

MMAS Cres × Cres 23.2 40.5 59.9

sko49 SFO ACOundir — 15.4 24.2 33.0

ACS Cit × Cres 11.3 20.2 31.8

ACS Cres × Cres 15.0 23.5 32.5

MMAS Cit × Cres 7.8 18.2 30.5

MMAS Cres × Cres 15.0 23.2 31.6

DRO ACOundir — 16.1 24.2 32.7

ACS Cit × Cres 14.1 22.3 31.7

MMAS Cit × Cres 10.5 20.5 31.1

HF ACOundir — 15.6 24.2 32.9

ACS Cit × Cres 10.5 18.4 31.1

ACS Cres × Cres 14.9 24.0 32.5

MMAS Cit × Cres 5.9 14.8 33.0

MMAS Cres × Cres 15.0 23.8 32.0

tai50a SFO ACOundir — 14.3 19.5 24.7

ACS Cit × Cres 12.6 18.5 24.1

ACS Cres × Cres 13.9 19.5 25.1

MMAS Cit × Cres 8.3 15.4 23.8

MMAS Cres × Cres 14.1 19.5 25.6

DRO ACOundir — 13.6 19.5 25.7

ACS Cit × Cres 14.2 19.2 24.5

MMAS Cit × Cres 12.4 18.2 23.9

HF ACOundir — 13.6 19.5 25.1

ACS Cit × Cres 12.9 18.7 24.3

ACS Cres × Cres 14.3 19.5 25.0

MMAS Cit × Cres 8.9 15.7 23.8

MMAS Cres × Cres 13.9 19.5 25.0

sko56 SFO ACOundir — 16.4 23.8 31.3

ACS Cit × Cres 12.0 20.4 30.0

ACS Cres × Cres 15.8 23.1 31.9

MMAS Cit × Cres 8.9 17.7 29.6

MMAS Cres × Cres 14.8 22.9 30.7

DRO ACOundir — 16.1 23.8 31.3

ACS Cit × Cres 14.3 22.0 30.4

MMAS Cit × Cres 10.8 19.9 29.4

HF ACOundir — 16.4 23.8 31.6

ACS Cit × Cres 11.2 18.3 29.5

ACS Cres × Cres 16.0 23.6 31.8

MMAS Cit × Cres 5.9 14.1 29.5

MMAS Cres × Cres 15.4 23.3 31.0
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Table D.5: QAP results (continued).

Assign. no LS LS

Instance order Alg. Pheromone min med max min med max

sko64 SFO ACOundir — 14.6 21.3 27.8

ACS Cit × Cres 12.0 18.6 26.7

ACS Cres × Cres 14.9 20.8 27.3

MMAS Cit × Cres 7.4 15.5 26.3

MMAS Cres × Cres 14.5 20.5 26.7

DRO ACOundir — 14.7 21.3 27.6

ACS Cit × Cres 13.6 19.9 26.4

MMAS Cit × Cres 10.9 18.1 26.5

HF ACOundir — 14.7 21.2 27.6

ACS Cit × Cres 11.0 17.0 26.6

ACS Cres × Cres 14.7 21.1 27.7

MMAS Cit × Cres 6.1 12.5 26.2

MMAS Cres × Cres 14.5 20.9 27.5
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Table D.6: GAP results. Entries of 0* in the % feas. column are values less

than 0.05. Entries of cns indicate that no feasible solutions were produced.

Assign. no η η

Instance order Alg. Pheromone min med max % feas. min med max % feas.

gap1-1 SFO ACOundir — 3.3 11.3 18.8 0.3 0 11.9 21.4 3.0

ACS Cit × Cres 1.8 4.2 18.5 98.8 3.9 8.3 17.6 99.6

ACS Cres × Cres 0.3 11.6 19.3 0.8 1.8 12.2 22.0 6.8

MMAS Cit × Cres 0 2.4 19.0 21.8 0 1.8 20.8 47.0

MMAS Cres × Cres 1.8 11.9 20.8 1.4 3.3 12.2 22.0 8.2

DRO ACOundir — 0 11.6 21.4 0.9 0 11.9 22.0 5.6

ACS Cit × Cres 0.3 4.5 20.2 99.1 0 3.0 17.6 99.5

MMAS Cit × Cres 0 0.6 20.2 37.9 0 0.6 19.9 57.5

SMC ACOundir — 1.8 11.0 21.1 1.4 0.3 11.9 22.3 8.3

ACS Cit × Cres 3.3 6.3 17.6 99.5 0.6 3.6 19.0 99.8

ACS Cres × Cres 0 11.6 19.9 7.7 0.3 11.9 19.9 27.3

MMAS Cit × Cres 0 1.5 20.2 49.6 0 3.3 21.4 74.1

MMAS Cres × Cres 1.8 11.9 20.5 10.5 0.9 12.5 20.5 34.2

DMC ACOundir — 2.1 11.3 22.3 1.4 0.3 12.2 22.3 8.2

ACS Cit × Cres 1.8 4.8 16.7 99.6 1.8 6.0 17.3 99.8

MMAS Cit × Cres 0 1.8 19.9 52.5 0 3.3 20.2 73.9

DCS ACOundir — 1.8 11.3 20.5 1.0 0 11.9 22.3 6.6

ACS Cit × Cres 0 4.5 18.8 99.4 0 6.0 17.3 99.7

MMAS Cit × Cres 0 3.0 22.0 44.6 0 1.8 19.6 64.0

DPS ACOundir — 1.8 11.6 22.0 1.2 1.2 11.9 22.3 7.0

ACS Cit × Cres 0 3.0 18.8 99.3 0 0.6 18.8 99.6

MMAS Cit × Cres 0 0.3 21.4 43.8 0 0.6 20.2 63.7

DPD ACOundir — 1.8 11.6 20.5 1.1 0.3 11.9 22.3 6.5

ACS Cit × Cres 0 3.0 16.1 99.2 0 2.7 16.7 99.5

MMAS Cit × Cres 0 0 22.3 44.0 0 0.9 20.8 62.8

gap1-2 SFO ACOundir — 0.9 7.5 15.0 0* 0 8.3 17.4 0.5

ACS Cit × Cres 0 3.4 15.0 74.5 0.9 2.8 13.8 99.1

ACS Cres × Cres 2.8 8.0 15.0 0* 1.2 8.6 17.4 2.2

MMAS Cit × Cres 0.9 7.5 15.0 0* 0 0 17.7 38.4

MMAS Cres × Cres 3.7 7.6 15.0 0* 1.5 8.0 17.1 0.1

DRO ACOundir — 0.3 8.6 16.2 0.1 0.6 9.2 17.4 1.0

ACS Cit × Cres 0.9 2.1 16.2 94.3 0.6 1.2 14.4 99.3

MMAS Cit × Cres 0.6 3.7 17.1 0.5 0 0.9 17.7 47.9

SMC ACOundir — 0.3 10.1 17.7 0.5 0 9.5 17.7 2.8

ACS Cit × Cres 1.2 7.0 15.6 98.8 0.6 3.4 17.4 99.6

ACS Cres × Cres 0 10.4 17.7 2.9 0.6 9.2 17.7 11.9

MMAS Cit × Cres 0.3 0.9 17.7 34.8 0 0.9 17.4 62.6

MMAS Cres × Cres 0.6 9.8 17.7 3.3 0 7.6 17.7 13.1

DMC ACOundir — 0.3 9.8 17.7 0.4 0 9.5 17.7 2.7

ACS Cit × Cres 0 6.4 14.4 99.0 0 3.4 15.0 99.7

MMAS Cit × Cres 0 0.9 17.1 35.5 0 0.9 17.4 62.7

DCS ACOundir — 1.2 9.5 17.7 0.1 0.6 9.5 17.4 1.2

ACS Cit × Cres 0.6 2.4 14.4 96.7 0 1.8 14.4 99.5

MMAS Cit × Cres 3.4 9.5 17.7 0.1 0 0.9 17.4 58.2

DPS ACOundir — 0 9.2 16.2 0.2 0.3 9.2 17.7 1.4

ACS Cit × Cres 0.6 2.1 15.6 98.1 0.3 0.9 15.6 99.3

MMAS Cit × Cres 0 0.9 17.1 9.5 0 0.9 17.7 52.8

DPD ACOundir — 1.5 9.2 17.7 0.2 0 9.2 17.7 1.3

ACS Cit × Cres 1.2 2.1 14.1 96.4 0.3 0.9 17.1 99.4

MMAS Cit × Cres 0 0.9 17.4 4.8 0 0.9 17.7 53.1
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Table D.6: GAP results (continued). Entries of 0* in the % feas. column are

values less than 0.05. Entries of cns indicate that no feasible solutions were

produced.

Assign. no η η

Instance order Alg. Pheromone min med max % feas. min med max % feas.

gap1-3 SFO ACOundir — 0 12.1 22.1 1.5 0.3 13.0 23.9 7.3

ACS Cit × Cres 3.2 5.3 18.6 99.4 2.9 4.4 22.4 99.7

ACS Cres × Cres 2.9 13.0 23.6 4.4 1.2 14.2 23.6 11.8

MMAS Cit × Cres 0 0.9 21.8 42.8 0 1.2 22.1 55.6

MMAS Cres × Cres 2.4 13.0 23.6 5.5 1.2 13.9 24.2 13.4

DRO ACOundir — 0.9 13.3 24.2 1.6 0 13.3 23.9 10.0

ACS Cit × Cres 0 2.4 19.8 99.2 0 2.7 21.2 99.6

MMAS Cit × Cres 0 1.8 22.1 41.5 0 0.3 21.8 56.1

SMC ACOundir — 1.5 13.0 23.9 1.0 0 13.6 24.5 13.1

ACS Cit × Cres 4.4 6.2 23.0 99.5 1.2 4.7 21.2 99.8

ACS Cres × Cres 1.2 11.8 23.6 4.2 0 13.3 24.5 23.7

MMAS Cit × Cres 0 0 23.6 40.7 0 2.9 22.1 67.2

MMAS Cres × Cres 1.5 11.8 23.0 4.3 1.2 12.7 23.6 26.7

DMC ACOundir — 0 13.3 23.3 1.6 0 13.6 24.5 18.4

ACS Cit × Cres 3.2 5.6 22.1 99.6 3.8 6.2 23.0 99.9

MMAS Cit × Cres 0 2.1 21.8 49.1 0 3.5 23.3 73.8

DCS ACOundir — 1.2 13.3 23.9 1.2 0 13.6 24.5 12.3

ACS Cit × Cres 0.3 3.8 19.5 99.5 0 5.0 20.1 99.8

MMAS Cit × Cres 0 0 23.6 41.3 0 2.4 21.2 65.9

DPS ACOundir — 2.1 13.3 23.9 1.8 0 13.3 24.5 12.3

ACS Cit × Cres 0 2.4 19.5 99.2 0 1.2 20.1 99.7

MMAS Cit × Cres 0 1.5 22.7 42.8 0 1.8 22.1 61.5

DPD ACOundir — 2.1 13.3 23.0 1.7 0.9 13.3 24.2 11.8

ACS Cit × Cres 0.9 2.4 20.1 99.3 1.5 3.5 21.8 99.7

MMAS Cit × Cres 0 1.5 22.7 41.5 0 0.3 22.4 59.6

gap1-4 SFO ACOundir — 0 10.0 17.9 0.3 0.9 10.3 19.6 3.9

ACS Cit × Cres 3.2 5.0 16.1 98.2 1.8 4.7 15.8 99.8

ACS Cres × Cres 0 10.9 19.6 1.0 2.1 11.4 19.6 9.1

MMAS Cit × Cres 0 2.1 17.9 23.2 0 0.3 17.9 57.7

MMAS Cres × Cres 1.5 11.1 19.6 0.9 0.9 10.9 19.6 10.6

DRO ACOundir — 1.5 10.3 18.5 0.8 0.3 10.3 19.6 5.8

ACS Cit × Cres 0 3.8 14.7 99.2 0.3 2.1 15.5 99.6

MMAS Cit × Cres 0 0.3 17.9 36.3 0 0.3 18.8 57.4

SMC ACOundir — 1.2 10.9 19.6 4.4 0.9 10.6 19.6 14.8

ACS Cit × Cres 2.9 5.6 17.6 99.7 1.2 2.9 15.8 99.8

ACS Cres × Cres 0 10.6 19.6 14.5 0.3 10.9 19.1 27.0

MMAS Cit × Cres 0 2.6 17.9 51.1 0 2.6 17.9 64.4

MMAS Cres × Cres 1.2 9.4 19.4 20.1 1.8 10.9 19.6 25.2

DMC ACOundir — 1.2 10.9 19.6 4.3 0.3 10.6 19.6 13.9

ACS Cit × Cres 2.3 6.7 17.6 99.7 2.1 4.4 17.9 99.8

MMAS Cit × Cres 0 2.6 18.5 52.0 0 2.6 19.6 65.6

DCS ACOundir — 0 10.6 19.6 2.6 0 10.6 19.6 11.4

ACS Cit × Cres 0.3 2.9 17.0 99.5 0 2.3 17.6 99.7

MMAS Cit × Cres 0 0 17.6 48.4 0 0.3 18.2 65.1

DPS ACOundir — 0.3 10.6 19.6 1.5 0.3 10.6 19.6 8.8

ACS Cit × Cres 0.3 2.6 16.4 99.3 0.3 1.8 18.5 99.7

MMAS Cit × Cres 0 0 17.6 41.9 0 0.3 17.0 59.2

DPD ACOundir — 1.2 10.6 19.4 1.5 0 10.6 19.6 8.5

ACS Cit × Cres 0 1.2 17.9 99.1 0 2.1 17.0 99.6

MMAS Cit × Cres 0 0 18.5 41.1 0 0.3 18.2 57.8
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Table D.6: GAP results (continued). Entries of 0* in the % feas. column are

values less than 0.05. Entries of cns indicate that no feasible solutions were

produced.

Assign. no η η

Instance order Alg. Pheromone min med max % feas. min med max % feas.

gap1-5 SFO ACOundir — 1.2 9.8 18.7 0.9 0.6 10.1 20.2 12.4

ACS Cit × Cres 2.5 4.0 18.4 99.2 1.5 4.3 16.9 99.8

ACS Cres × Cres 1.8 9.8 19.0 4.0 1.2 9.5 20.6 16.7

MMAS Cit × Cres 0 1.5 18.4 37.1 0 2.1 19.9 64.7

MMAS Cres × Cres 0.9 9.2 19.0 2.6 1.2 10.1 20.2 19.8

DRO ACOundir — 0.3 9.8 21.2 2.3 0 10.1 21.5 16.2

ACS Cit × Cres 0.6 1.8 16.0 99.4 0 2.5 19.3 99.7

MMAS Cit × Cres 0 0.9 19.0 46.3 0 1.8 19.3 67.3

SMC ACOundir — 0 9.8 23.0 10.6 0 10.1 23.0 32.4

ACS Cit × Cres 1.5 2.5 16.6 99.8 0.6 2.1 15.6 99.9

ACS Cres × Cres 1.2 7.1 21.2 18.0 0.3 8.0 19.3 34.4

MMAS Cit × Cres 0 1.2 18.7 61.1 0.6 2.1 19.9 76.7

MMAS Cres × Cres 0.6 7.4 21.5 17.9 0 7.7 21.5 37.8

DMC ACOundir — 0 9.8 23.0 11.0 0 10.1 23.0 33.0

ACS Cit × Cres 1.2 3.1 15.6 99.8 0.9 3.1 16.0 99.9

MMAS Cit × Cres 0.9 1.5 19.0 62.9 0 2.5 19.3 81.0

DCS ACOundir — 0.9 9.8 20.9 3.0 0.6 10.1 21.5 20.0

ACS Cit × Cres 0.6 2.1 16.9 99.5 1.8 2.8 16.3 99.8

MMAS Cit × Cres 0 1.2 19.9 51.6 0 2.8 19.0 75.9

DPS ACOundir — 0.3 9.8 21.5 3.7 0 10.1 21.5 19.9

ACS Cit × Cres 0.9 1.5 19.0 99.4 0.6 1.2 20.6 99.6

MMAS Cit × Cres 0 1.8 21.2 53.6 0 1.8 19.3 69.8

DPD ACOundir — 0.6 9.8 21.2 3.4 0.3 10.1 21.8 18.6

ACS Cit × Cres 0.6 3.1 16.9 99.5 0.6 1.5 15.6 99.7

MMAS Cit × Cres 0 1.2 18.7 52.3 0 1.5 18.7 70.2

gap2-1 SFO ACOundir — 4.4 17.7 29.3 0.5 5.1 18.0 31.1 8.5

ACS Cit × Cres 4.4 7.6 25.3 98.8 3.2 6.2 30.0 99.8

ACS Cres × Cres 7.8 18.0 28.6 0.8 3.2 17.5 30.6 11.9

MMAS Cit × Cres 0.2 3.0 30.2 49.4 0.2 2.3 30.0 76.3

MMAS Cres × Cres 6.5 19.4 30.4 1.8 3.7 15.9 33.4 13.9

DRO ACOundir — 5.3 18.0 30.4 0.6 4.4 18.0 30.4 8.8

ACS Cit × Cres 0.5 1.8 26.7 98.9 0 1.2 24.2 99.6

MMAS Cit × Cres 0 0.5 30.2 49.3 0 1.2 29.0 73.5

SMC ACOundir — 4.6 18.2 30.0 1.2 4.6 18.0 32.0 14.6

ACS Cit × Cres 1.4 7.8 24.9 99.4 3.0 6.9 25.8 99.8

ACS Cres × Cres 5.5 18.9 33.2 2.2 2.5 18.0 31.6 20.8

MMAS Cit × Cres 0 1.2 28.6 57.9 0 2.5 29.0 79.5

MMAS Cres × Cres 6.7 18.9 30.0 3.3 3.0 16.8 31.1 20.5

DMC ACOundir — 3.9 18.2 30.0 1.1 3.0 18.0 32.3 15.1

ACS Cit × Cres 3.9 6.5 25.8 99.5 1.2 5.1 25.1 99.8

MMAS Cit × Cres 0 1.6 27.4 55.1 0 1.4 30.9 78.5

DCS ACOundir — 6.7 18.0 30.2 0.9 2.1 17.7 32.9 13.5

ACS Cit × Cres 0.7 4.8 25.3 99.3 0.5 4.8 27.2 99.8

MMAS Cit × Cres 0 1.2 31.1 51.9 0 1.2 30.2 80.9

DPS ACOundir — 5.5 18.2 31.1 0.9 2.1 18.0 32.0 11.7

ACS Cit × Cres 0 2.8 27.6 99.1 0 0.5 24.7 99.7

MMAS Cit × Cres 0 0.5 29.5 51.7 0 1.2 29.5 76.9

DPD ACOundir — 5.8 18.0 31.3 0.9 3.5 18.0 32.0 11.0

ACS Cit × Cres 0.5 2.5 27.4 98.9 0 1.8 25.6 99.7

MMAS Cit × Cres 0 0.5 30.9 49.3 0 1.2 27.4 74.5
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Table D.6: GAP results (continued). Entries of 0* in the % feas. column are

values less than 0.05. Entries of cns indicate that no feasible solutions were

produced.

Assign. no η η

Instance order Alg. Pheromone min med max % feas. min med max % feas.

gap2-2 SFO ACOundir — 6.7 18.8 33.5 0.7 5.0 18.8 32.8 7.6

ACS Cit × Cres 3.0 7.3 30.0 99.2 1.8 4.4 25.2 99.7

ACS Cres × Cres 6.0 19.5 31.9 1.5 4.8 19.0 35.1 11.9

MMAS Cit × Cres 0 3.2 30.5 50.1 0.5 3.2 30.5 73.9

MMAS Cres × Cres 5.5 17.9 33.3 2.9 6.2 17.4 31.4 14.5

DRO ACOundir — 5.7 18.8 31.2 0.7 3.9 18.8 35.3 8.7

ACS Cit × Cres 0.5 2.5 27.3 98.6 1.1 3.0 25.2 99.4

MMAS Cit × Cres 0 2.5 31.0 49.5 0 0.5 29.8 66.8

SMC ACOundir — 4.8 17.9 31.0 1.2 3.9 18.3 34.4 13.5

ACS Cit × Cres 3.9 6.4 29.8 99.2 2.3 6.4 26.6 99.8

ACS Cres × Cres 3.0 16.5 31.9 2.7 2.5 16.5 32.6 23.7

MMAS Cit × Cres 0 3.2 29.4 56.3 0.2 2.5 31.7 80.3

MMAS Cres × Cres 3.4 15.8 30.7 5.1 0.9 15.4 31.0 26.0

DMC ACOundir — 5.0 17.9 31.2 1.2 3.0 18.3 34.6 13.0

ACS Cit × Cres 4.1 5.7 28.2 99.1 3.7 5.3 27.8 99.8

MMAS Cit × Cres 0 3.4 31.0 52.5 0.5 2.3 30.5 80.9

DCS ACOundir — 6.9 18.1 30.3 0.7 4.4 18.3 34.6 10.5

ACS Cit × Cres 2.5 3.7 27.8 99.0 1.1 4.4 27.3 99.7

MMAS Cit × Cres 0 2.1 29.8 45.5 0 2.1 29.1 74.6

DPS ACOundir — 5.7 18.6 37.2 0.9 4.8 18.6 33.5 10.8

ACS Cit × Cres 0 2.5 28.0 98.6 0.9 2.8 28.9 99.6

MMAS Cit × Cres 0 0 30.5 49.1 0 0.5 29.8 68.1

DPD ACOundir — 6.2 18.6 35.3 0.9 4.6 18.6 33.9 10.1

ACS Cit × Cres 0 2.1 26.6 98.6 0 3.0 25.5 99.6

MMAS Cit × Cres 0 2.1 29.4 48.6 0 1.8 29.1 69.8

gap2-3 SFO ACOundir — 4.5 18.6 33.6 1.6 3.1 18.6 36.7 23.5

ACS Cit × Cres 1.4 6.4 27.1 99.4 2.4 7.4 27.4 99.9

ACS Cres × Cres 5.0 18.3 32.9 3.0 3.6 18.1 33.6 30.8

MMAS Cit × Cres 0 1.7 30.0 55.9 0 1.7 30.0 78.6

MMAS Cres × Cres 6.2 17.9 31.0 6.3 4.0 17.4 33.1 35.0

DRO ACOundir — 4.3 18.6 31.9 2.6 3.6 18.3 34.3 26.3

ACS Cit × Cres 0 1.7 28.1 99.1 0 1.4 29.0 99.8

MMAS Cit × Cres 0 1.0 31.4 60.0 0 1.7 29.5 79.3

SMC ACOundir — 4.8 18.1 32.4 3.0 2.1 18.1 35.0 30.9

ACS Cit × Cres 3.1 5.5 27.6 99.4 1.4 6.0 23.6 99.8

ACS Cres × Cres 5.2 19.8 32.6 6.1 2.1 17.9 34.5 36.1

MMAS Cit × Cres 0 1.0 29.8 62.8 0 1.2 29.3 81.8

MMAS Cres × Cres 6.0 20.0 35.7 8.9 1.0 18.3 33.6 44.3

DMC ACOundir — 3.6 17.9 31.7 3.4 2.9 18.1 34.3 31.7

ACS Cit × Cres 3.1 4.5 25.2 99.4 2.6 5.7 28.1 99.9

MMAS Cit × Cres 0 1.0 28.6 65.9 0 1.7 30.2 80.9

DCS ACOundir — 6.2 18.8 31.7 1.5 3.3 18.3 35.0 25.4

ACS Cit × Cres 0.5 4.0 26.2 99.3 1.2 3.8 25.7 99.9

MMAS Cit × Cres 0 1.0 29.8 53.7 0 0.5 30.0 79.5

DPS ACOundir — 4.8 18.3 32.4 3.0 2.1 18.3 33.6 28.5

ACS Cit × Cres 0 2.4 27.1 99.2 0.5 1.2 27.9 99.8

MMAS Cit × Cres 0 0.5 30.0 61.0 0 1.0 29.3 79.5

DPD ACOundir — 6.2 18.6 31.9 2.8 2.6 18.3 33.8 26.4

ACS Cit × Cres 0.5 1.4 24.3 99.2 0.5 2.4 23.6 99.8

MMAS Cit × Cres 0 1.0 31.4 57.8 0 1.2 30.5 76.6
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Table D.6: GAP results (continued). Entries of 0* in the % feas. column are

values less than 0.05. Entries of cns indicate that no feasible solutions were

produced.

Assign. no η η

Instance order Alg. Pheromone min med max % feas. min med max % feas.

gap2-4 SFO ACOundir — 4.5 18.4 30.5 1.2 4.1 18.4 31.5 16.7

ACS Cit × Cres 3.3 8.6 26.3 99.1 5.5 6.7 25.8 99.8

ACS Cres × Cres 4.1 17.9 29.6 1.8 4.1 18.1 32.7 19.2

MMAS Cit × Cres 0 2.6 29.6 50.6 0 3.1 29.8 78.2

MMAS Cres × Cres 6.4 16.9 30.3 3.4 3.3 17.4 31.7 21.3

DRO ACOundir — 5.5 18.6 32.9 1.7 4.1 18.4 32.2 19.0

ACS Cit × Cres 1.2 2.6 26.7 99.2 1.7 3.1 27.2 99.7

MMAS Cit × Cres 0 1.9 30.8 57.2 0 2.1 28.4 85.2

SMC ACOundir — 3.8 18.6 32.5 3.4 3.8 18.1 33.2 29.5

ACS Cit × Cres 5.0 6.4 27.0 99.5 2.1 3.8 24.3 99.9

ACS Cres × Cres 5.0 18.4 32.7 7.3 2.9 17.7 33.2 39.5

MMAS Cit × Cres 0 2.4 30.1 65.3 0 2.9 28.6 83.6

MMAS Cres × Cres 4.8 17.9 32.5 8.0 2.1 17.4 32.9 41.3

DMC ACOundir — 5.3 18.9 32.0 3.3 3.1 18.4 32.5 29.1

ACS Cit × Cres 3.1 6.7 26.3 99.5 3.8 6.2 26.3 99.8

MMAS Cit × Cres 0 2.1 30.8 65.4 0 2.1 28.9 81.5

DCS ACOundir — 4.3 18.4 31.5 1.2 4.3 18.4 32.2 19.5

ACS Cit × Cres 1.7 5.7 28.4 99.1 1.7 4.5 28.4 99.8

MMAS Cit × Cres 0 2.1 31.0 53.9 1.0 2.4 29.4 84.8

DPS ACOundir — 5.7 18.6 30.8 2.2 3.8 18.4 32.0 22.1

ACS Cit × Cres 1.7 3.1 26.3 99.3 0 2.1 25.8 99.7

MMAS Cit × Cres 0 1.7 30.1 63.0 0 2.1 28.4 80.4

DPD ACOundir — 3.6 18.6 30.5 2.1 3.3 18.4 33.4 20.6

ACS Cit × Cres 1.4 3.1 25.8 99.1 0 2.6 26.5 99.7

MMAS Cit × Cres 0 2.1 28.9 60.7 1.2 1.7 26.0 81.7

gap2-5 SFO ACOundir — 5.1 18.0 31.8 4.9 4.2 17.8 33.4 31.1

ACS Cit × Cres 2.8 4.4 25.0 99.8 2.1 3.5 24.8 99.9

ACS Cres × Cres 3.7 17.3 31.5 8.1 3.3 16.8 31.5 38.4

MMAS Cit × Cres 0 1.6 30.4 77.3 0 1.6 28.5 92.1

MMAS Cres × Cres 3.5 16.8 30.8 9.2 2.6 15.4 31.3 41.7

DRO ACOundir — 4.7 17.8 33.2 3.1 2.6 17.5 32.0 26.1

ACS Cit × Cres 0.5 1.6 27.8 99.5 0.5 1.9 22.9 99.9

MMAS Cit × Cres 0 0.9 28.3 73.8 0 0.9 29.2 89.4

SMC ACOundir — 3.5 18.0 31.1 4.3 2.8 17.8 33.6 34.1

ACS Cit × Cres 2.1 5.1 24.8 99.7 1.2 4.7 26.2 99.9

ACS Cres × Cres 3.0 17.3 30.8 7.1 2.3 17.3 32.0 39.8

MMAS Cit × Cres 0 1.9 28.7 67.3 0 1.6 29.0 91.3

MMAS Cres × Cres 3.5 17.5 30.8 8.1 2.6 16.6 32.5 37.7

DMC ACOundir — 3.5 18.0 30.6 4.0 2.6 17.8 34.6 33.6

ACS Cit × Cres 3.0 4.4 24.8 99.7 2.3 4.0 29.0 99.9

MMAS Cit × Cres 0 2.1 30.4 72.3 0 1.6 29.0 90.7

DCS ACOundir — 4.2 17.5 31.8 2.9 3.7 17.5 35.7 28.7

ACS Cit × Cres 1.6 4.7 26.9 99.5 1.4 4.0 25.7 99.9

MMAS Cit × Cres 0 0.7 30.4 69.6 0 1.6 26.4 91.8

DPS ACOundir — 5.1 17.8 31.3 3.6 3.0 17.8 33.4 28.7

ACS Cit × Cres 0.2 2.3 31.3 99.5 1.4 2.6 24.1 99.9

MMAS Cit × Cres 0 0.9 28.7 71.4 0 0.9 29.0 89.1

DPD ACOundir — 4.4 17.8 31.1 3.4 2.1 17.5 32.2 27.0

ACS Cit × Cres 0 1.4 26.2 99.5 0 1.9 25.0 99.9

MMAS Cit × Cres 0 0.7 28.7 71.4 0 1.2 28.5 90.1
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Table D.6: GAP results (continued). Entries of 0* in the % feas. column are

values less than 0.05. Entries of cns indicate that no feasible solutions were

produced.

Assign. no η η

Instance order Alg. Pheromone min med max % feas. min med max % feas.

gap3-1 SFO ACOundir — 6.2 12.1 17.4 0.1 3.6 12.2 20.7 4.5

ACS Cit × Cres 2.8 5.9 18.1 91.5 2.8 4.0 17.6 99.7

ACS Cres × Cres 6.9 12.2 19.0 0.1 3.8 12.1 19.8 6.5

MMAS Cit × Cres 7.6 12.6 18.1 0.1 0.3 1.9 18.3 77.6

MMAS Cres × Cres 7.2 13.3 17.4 0* 3.4 11.2 20.9 8.7

DRO ACOundir — 5.0 12.4 20.2 0.2 3.4 12.2 20.5 6.6

ACS Cit × Cres 0.5 1.9 16.7 97.4 1.0 1.9 17.6 99.6

MMAS Cit × Cres 0 1.4 19.0 21.1 0 1.4 20.9 75.0

SMC ACOundir — 5.5 12.2 19.3 0.8 3.8 12.2 20.7 13.0

ACS Cit × Cres 2.6 5.0 17.2 99.1 2.4 4.1 17.2 99.8

ACS Cres × Cres 5.5 12.1 20.3 0.9 2.2 12.1 20.5 15.1

MMAS Cit × Cres 0.3 1.4 18.6 62.1 0 2.1 17.8 87.1

MMAS Cres × Cres 4.8 11.9 19.0 1.4 3.4 11.4 19.5 18.0

DMC ACOundir — 5.9 12.4 20.2 0.8 3.3 12.4 20.9 13.4

ACS Cit × Cres 4.7 5.3 17.8 99.2 2.9 4.7 18.8 99.8

MMAS Cit × Cres 0 1.7 18.8 59.0 0 2.1 18.4 88.1

DCS ACOundir — 6.7 12.6 18.8 0.2 4.5 12.4 20.5 8.1

ACS Cit × Cres 2.2 4.5 17.6 98.2 3.1 4.3 17.4 99.8

MMAS Cit × Cres 0 1.0 19.7 34.1 0 1.2 19.5 80.5

DPS ACOundir — 6.6 12.4 19.3 0.4 4.1 12.4 20.5 9.3

ACS Cit × Cres 0.2 1.4 16.4 98.5 0.5 2.4 18.3 99.7

MMAS Cit × Cres 0 1.2 19.5 37.8 0 1.4 18.4 78.4

DPD ACOundir — 5.7 12.2 19.0 0.3 4.1 12.4 20.3 8.4

ACS Cit × Cres 0.9 2.1 19.8 98.2 1.0 2.4 16.9 99.7

MMAS Cit × Cres 0 1.4 19.1 35.7 0.2 1.4 20.7 78.3

gap4-1 SFO ACOundir — 9.5 18.1 27.7 0.3 6.1 18.1 29.0 13.0

ACS Cit × Cres 3.5 6.9 23.3 98.5 3.8 6.1 24.4 99.8

ACS Cres × Cres 9.1 18.0 28.0 0.4 5.2 18.1 28.5 17.9

MMAS Cit × Cres 0.5 1.8 25.3 42.2 0.5 2.0 26.7 87.5

MMAS Cres × Cres 7.5 17.8 27.4 0.8 6.9 17.8 28.7 20.2

DRO ACOundir — 9.8 17.8 27.9 0.3 7.3 18.0 28.2 10.9

ACS Cit × Cres 0 0.6 23.3 97.0 0.2 1.5 25.0 99.6

MMAS Cit × Cres 0 0.8 26.4 34.6 0 0.8 26.5 83.2

SMC ACOundir — 8.7 18.3 26.4 0.6 5.3 18.3 29.0 16.0

ACS Cit × Cres 3.0 6.9 24.8 98.9 4.0 5.2 23.9 99.9

ACS Cres × Cres 8.7 17.8 27.0 0.5 5.2 18.1 29.7 16.5

MMAS Cit × Cres 0.3 1.2 26.4 58.5 0 1.1 26.2 84.4

MMAS Cres × Cres 8.2 18.3 27.4 0.8 6.3 18.1 28.7 18.0

DMC ACOundir — 7.8 18.0 26.7 0.6 7.3 18.3 30.5 17.7

ACS Cit × Cres 4.7 8.1 23.5 98.9 4.3 6.1 24.1 99.9

MMAS Cit × Cres 0.3 1.7 25.3 58.7 0 2.6 25.2 89.9

DCS ACOundir — 9.1 17.5 26.1 0.2 7.0 18.1 29.1 13.4

ACS Cit × Cres 2.0 5.2 22.4 96.9 3.4 5.6 24.2 99.9

MMAS Cit × Cres 0.2 1.4 24.4 29.5 0.2 0.9 24.4 84.8

DPS ACOundir — 8.2 17.8 27.7 0.3 6.3 18.0 28.4 12.2

ACS Cit × Cres 0.2 1.4 25.0 97.9 0.3 2.3 25.2 99.6

MMAS Cit × Cres 0 0.5 25.8 44.4 0 0.9 25.5 83.7

DPD ACOundir — 9.3 18.0 26.5 0.3 7.2 18.0 29.3 11.1

ACS Cit × Cres 0.2 1.5 24.1 97.5 0.5 2.7 23.2 99.6

MMAS Cit × Cres 0 0.6 27.9 36.8 0 1.1 26.4 82.7
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Table D.6: GAP results (continued). Entries of 0* in the % feas. column are

values less than 0.05. Entries of cns indicate that no feasible solutions were

produced.

Assign. no η η

Instance order Alg. Pheromone min med max % feas. min med max % feas.

gap5-1 SFO ACOundir — 5.5 14.2 22.9 8.4 4.8 14.2 23.4 49.6

ACS Cit × Cres 2.7 4.4 20.2 99.6 3.0 4.1 19.4 99.9

ACS Cres × Cres 3.7 13.3 22.2 13.8 3.7 13.1 24.2 55.7

MMAS Cit × Cres 0 1.8 21.0 69.0 0 2.7 20.2 89.8

MMAS Cres × Cres 4.6 13.7 22.6 17.7 2.8 12.4 22.7 57.1

DRO ACOundir — 5.5 14.4 22.7 4.5 4.6 14.4 23.8 40.2

ACS Cit × Cres 1.2 2.1 18.8 99.5 0.7 2.7 19.9 99.9

MMAS Cit × Cres 0 1.8 23.3 67.0 0.2 2.1 19.9 92.3

SMC ACOundir — 5.3 15.1 23.3 6.6 5.0 14.6 23.8 49.0

ACS Cit × Cres 2.0 4.8 22.2 99.6 3.4 4.1 20.6 100.0

ACS Cres × Cres 4.4 14.9 25.4 11.9 4.6 14.2 23.6 53.9

MMAS Cit × Cres 0 1.8 21.8 74.7 0 2.5 22.2 96.0

MMAS Cres × Cres 6.4 14.9 24.0 14.6 3.9 13.9 23.4 57.5

DMC ACOundir — 5.9 15.1 24.5 6.7 4.8 14.6 23.4 49.6

ACS Cit × Cres 2.3 4.3 20.1 99.7 2.0 3.2 21.1 100.0

MMAS Cit × Cres 0 2.3 20.8 74.2 0 2.5 21.1 95.6

DCS ACOundir — 6.2 14.6 23.6 4.5 3.6 14.6 23.6 41.4

ACS Cit × Cres 1.6 3.2 21.0 99.6 1.8 3.9 19.5 99.9

MMAS Cit × Cres 0 1.6 22.7 69.6 0 2.5 19.7 93.9

DPS ACOundir — 5.5 14.4 22.6 4.8 4.1 14.4 23.8 42.2

ACS Cit × Cres 0.7 1.4 22.0 99.6 1.8 3.0 20.6 99.9

MMAS Cit × Cres 0 1.4 20.8 65.7 0 2.1 20.8 93.2

DPD ACOundir — 5.9 14.4 22.9 4.3 5.3 14.4 23.1 39.2

ACS Cit × Cres 0.7 2.0 19.0 99.4 1.1 3.0 19.9 99.9

MMAS Cit × Cres 0 1.6 21.3 68.2 0 2.1 20.1 91.1

gap6-1 SFO ACOundir — 7.6 15.0 23.3 0.5 6.3 15.1 24.4 26.3

ACS Cit × Cres 2.8 5.8 19.2 98.8 3.0 5.0 21.0 99.9

ACS Cres × Cres 8.1 15.1 22.7 0.6 6.2 15.1 24.0 26.3

MMAS Cit × Cres 0 1.4 22.7 51.9 0 1.4 21.0 94.1

MMAS Cres × Cres 7.4 15.2 22.6 0.8 6.8 15.0 24.4 28.4

DRO ACOundir — 7.6 15.4 22.5 0.8 6.4 15.4 24.0 28.3

ACS Cit × Cres 0.8 1.8 20.4 99.2 0.4 2.8 20.2 99.9

MMAS Cit × Cres 0 1.2 21.6 66.5 0.3 1.3 21.4 96.8

SMC ACOundir — 7.5 15.8 23.1 1.1 6.7 15.5 24.7 36.9

ACS Cit × Cres 3.7 5.8 22.6 99.4 3.5 5.0 19.1 99.9

ACS Cres × Cres 9.1 15.8 23.3 2.1 5.4 15.0 23.8 40.1

MMAS Cit × Cres 0 1.6 22.7 74.0 0.3 1.4 21.9 98.9

MMAS Cres × Cres 6.8 15.6 24.0 2.9 5.0 14.6 24.7 47.8

DMC ACOundir — 8.5 15.8 22.6 1.2 6.6 15.5 25.2 37.7

ACS Cit × Cres 3.9 5.3 20.4 99.4 3.0 5.0 19.1 100.0

MMAS Cit × Cres 0.1 1.6 21.8 76.9 0.3 1.4 21.6 99.2

DCS ACOundir — 8.1 15.9 24.0 0.9 6.8 15.5 23.8 35.1

ACS Cit × Cres 2.0 3.5 22.5 99.3 2.6 4.1 20.0 100.0

MMAS Cit × Cres 0 1.4 21.7 73.0 0 1.3 21.3 98.4

DPS ACOundir — 8.5 15.5 23.3 1.1 6.8 15.4 24.7 32.8

ACS Cit × Cres 0.5 2.4 20.5 99.3 1.2 3.3 20.1 99.9

MMAS Cit × Cres 0 1.3 22.2 74.2 0.1 1.4 22.3 97.1

DPD ACOundir — 7.8 15.5 22.9 1.0 7.5 15.4 23.8 30.4

ACS Cit × Cres 0.7 2.2 19.8 99.1 1.4 2.8 20.1 99.9

MMAS Cit × Cres 0 1.2 22.5 69.7 0.1 1.4 22.5 97.4
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Table D.6: GAP results (continued). Entries of 0* in the % feas. column are

values less than 0.05. Entries of cns indicate that no feasible solutions were

produced.

Assign. no η η

Instance order Alg. Pheromone min med max % feas. min med max % feas.

gap7-1 SFO ACOundir — 9.7 15.5 20.0 0.2 7.4 15.3 23.2 21.7

ACS Cit × Cres 3.8 5.8 19.4 97.1 3.7 4.7 19.2 99.9

ACS Cres × Cres 9.7 15.6 20.6 0.2 8.3 15.3 22.7 24.3

MMAS Cit × Cres 0.2 1.6 22.9 20.5 0.3 1.3 21.0 92.2

MMAS Cres × Cres 9.0 14.9 21.2 0.2 7.6 15.2 23.4 30.4

DRO ACOundir — 10.1 15.2 20.4 0.2 7.2 15.1 22.6 23.1

ACS Cit × Cres 0.5 1.6 20.9 97.0 1.7 3.7 18.9 99.9

MMAS Cit × Cres 0.2 1.3 21.1 34.2 0.3 1.5 21.0 94.6

SMC ACOundir — 9.1 15.2 20.6 0.4 6.5 15.0 22.8 31.4

ACS Cit × Cres 5.2 5.6 19.9 98.6 4.4 5.3 18.0 99.9

ACS Cres × Cres 7.9 15.1 22.0 0.4 6.9 14.8 22.8 33.7

MMAS Cit × Cres 0.5 1.9 20.2 57.5 0.3 1.5 20.6 98.1

MMAS Cres × Cres 8.6 14.9 20.8 0.5 7.4 14.3 21.7 39.9

DMC ACOundir — 8.5 15.0 21.1 0.3 6.3 15.0 22.9 31.1

ACS Cit × Cres 3.7 5.6 20.1 98.3 3.7 5.0 18.8 99.9

MMAS Cit × Cres 0.4 2.1 22.6 54.7 0.2 1.4 21.5 97.6

DCS ACOundir — 9.2 14.8 21.4 0.3 7.5 15.0 22.7 26.1

ACS Cit × Cres 1.7 3.4 18.4 98.5 3.9 4.5 19.1 99.9

MMAS Cit × Cres 0.1 1.3 20.4 33.6 0.2 1.4 20.0 96.3

DPS ACOundir — 8.8 15.1 21.7 0.3 6.6 15.1 22.6 26.7

ACS Cit × Cres 0.5 1.4 18.4 98.6 1.9 3.8 18.6 99.9

MMAS Cit × Cres 0.1 1.1 20.5 53.4 0.2 1.6 20.0 95.6

DPD ACOundir — 9.8 15.2 21.0 0.3 7.1 15.1 23.2 24.2

ACS Cit × Cres 1.2 1.6 20.8 98.7 2.0 3.9 19.5 99.9

MMAS Cit × Cres 0.2 1.3 21.2 42.9 0.2 1.4 21.0 95.3

gap8-1 SFO ACOundir — cns cns cns 0 8.0 14.2 20.2 0.2

ACS Cit × Cres cns cns cns 0 4.3 5.9 18.0 96.8

ACS Cres × Cres cns cns cns 0 9.7 14.4 19.9 0.2

MMAS Cit × Cres cns cns cns 0 0.9 2.0 19.2 29.6

MMAS Cres × Cres cns cns cns 0 9.2 14.5 20.0 0.2

DRO ACOundir — 14.7 15.8 16.8 0* 10.1 14.6 18.6 0.1

ACS Cit × Cres 14.7 15.8 16.8 0* 0.8 1.3 17.8 96.6

MMAS Cit × Cres 14.7 15.8 16.8 0* 0.7 2.7 19.3 11.4

SMC ACOundir — cns cns cns 0 9.2 14.3 19.9 0.3

ACS Cit × Cres cns cns cns 0 4.6 5.5 18.4 99.2

ACS Cres × Cres cns cns cns 0 8.4 14.3 18.9 0.3

MMAS Cit × Cres cns cns cns 0 1.1 1.9 19.9 53.6

MMAS Cres × Cres cns cns cns 0 8.9 14.6 20.4 0.6

DMC ACOundir — cns cns cns 0 9.8 14.3 20.1 0.3

ACS Cit × Cres cns cns cns 0 3.6 5.8 17.4 98.5

MMAS Cit × Cres cns cns cns 0 0.6 2.0 19.2 52.7

DCS ACOundir — cns cns cns 0 9.2 14.3 19.8 0.2

ACS Cit × Cres cns cns cns 0 3.4 4.9 19.9 97.5

MMAS Cit × Cres cns cns cns 0 0.8 1.9 19.8 32.6

DPS ACOundir — cns cns cns 0 10.5 14.5 19.1 0.2

ACS Cit × Cres cns cns cns 0 1.0 1.3 18.8 96.7

MMAS Cit × Cres cns cns cns 0 0.4 1.7 20.2 30.3

DPD ACOundir — 13.3 13.3 13.3 0* 10.0 14.4 18.9 0.2

ACS Cit × Cres 13.3 13.3 13.3 0* 0.7 1.6 18.0 96.6

MMAS Cit × Cres 13.3 13.3 13.3 0* 0.6 2.6 19.5 16.1
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Table D.6: GAP results (continued). Entries of 0* in the % feas. column are

values less than 0.05. Entries of cns indicate that no feasible solutions were

produced.

Assign. no η η

Instance order Alg. Pheromone min med max % feas. min med max % feas.

gap9-1 SFO ACOundir — 8.9 16.8 23.7 1.6 7.3 16.8 26.2 28.4

ACS Cit × Cres 3.5 5.8 23.7 99.3 3.1 5.6 21.0 99.9

ACS Cres × Cres 7.9 15.9 24.5 3.5 6.5 15.7 25.0 33.9

MMAS Cit × Cres 0.4 2.4 23.0 57.9 0.3 2.0 25.2 89.6

MMAS Cres × Cres 8.0 16.2 23.6 4.0 7.1 15.5 24.5 37.8

DRO ACOundir — 9.2 16.5 24.4 1.1 7.6 16.6 25.7 25.1

ACS Cit × Cres 1.4 2.0 21.6 99.1 1.6 3.7 22.6 99.9

MMAS Cit × Cres 0 1.8 23.1 62.2 0.3 2.1 23.4 90.7

SMC ACOundir — 8.2 16.6 24.3 2.0 7.2 16.8 25.7 34.1

ACS Cit × Cres 3.5 6.3 20.7 99.1 3.2 5.6 20.9 99.9

ACS Cres × Cres 8.7 16.9 27.4 3.1 7.2 16.2 25.1 35.6

MMAS Cit × Cres 0.3 2.8 23.0 72.3 0.1 2.4 22.6 97.9

MMAS Cres × Cres 9.6 16.8 24.3 3.9 6.5 15.9 25.5 41.3

DMC ACOundir — 9.4 16.6 23.8 1.9 7.2 16.6 26.0 34.4

ACS Cit × Cres 3.8 6.6 22.3 99.4 3.7 6.1 20.7 99.9

MMAS Cit × Cres 0 2.4 22.7 68.9 0.1 2.4 22.8 97.3

DCS ACOundir — 7.2 16.6 24.0 0.6 6.8 16.6 25.5 21.1

ACS Cit × Cres 2.8 3.7 22.1 98.9 1.7 5.1 22.0 99.9

MMAS Cit × Cres 0.3 2.3 22.8 56.5 0.3 2.1 24.0 92.1

DPS ACOundir — 7.9 16.5 24.0 1.2 6.9 16.5 25.2 26.5

ACS Cit × Cres 1.6 2.1 21.0 99.2 2.0 3.7 20.6 99.9

MMAS Cit × Cres 0.3 2.1 23.3 67.6 0.1 2.1 22.6 92.0

DPD ACOundir — 8.3 16.6 24.0 1.1 6.6 16.6 26.0 24.3

ACS Cit × Cres 1.3 2.1 20.9 99.2 2.4 4.4 20.2 99.9

MMAS Cit × Cres 0 1.8 24.1 64.3 0.3 2.1 23.0 91.9

gap10-1 SFO ACOundir — 10.2 16.5 22.2 0.3 8.7 16.4 23.8 21.1

ACS Cit × Cres 4.1 5.9 20.8 98.0 4.2 5.1 20.8 99.9

ACS Cres × Cres 10.6 16.5 22.8 0.3 8.7 16.2 24.4 21.2

MMAS Cit × Cres 0.5 2.3 23.5 38.9 0.2 1.6 21.4 97.9

MMAS Cres × Cres 10.2 16.4 22.7 0.3 8.2 16.1 24.7 23.6

DRO ACOundir — 10.6 16.5 21.9 0.2 7.7 16.3 24.5 17.9

ACS Cit × Cres 1.5 2.5 21.2 96.7 2.6 4.1 21.3 99.9

MMAS Cit × Cres 0.3 2.2 21.8 28.2 0.1 1.5 22.8 94.7

SMC ACOundir — 10.0 16.4 21.5 0.4 7.6 16.4 24.0 28.2

ACS Cit × Cres 4.3 6.4 21.3 98.7 3.5 5.3 20.6 100.0

ACS Cres × Cres 10.3 16.3 22.5 0.6 8.0 16.0 24.3 32.4

MMAS Cit × Cres 0.4 2.1 23.2 58.4 0.2 1.6 21.6 99.2

MMAS Cres × Cres 9.3 16.2 23.0 0.9 8.5 15.8 23.5 38.4

DMC ACOundir — 10.1 16.5 22.1 0.5 8.6 16.3 23.8 28.3

ACS Cit × Cres 3.5 5.0 21.0 98.5 4.4 5.1 20.9 99.9

MMAS Cit × Cres 0.3 2.3 22.1 57.9 0.3 1.7 22.0 99.1

DCS ACOundir — 9.5 16.4 21.9 0.2 7.7 16.3 24.0 23.4

ACS Cit × Cres 2.6 5.3 21.7 98.6 3.8 4.6 20.7 99.9

MMAS Cit × Cres 0.5 2.6 21.3 28.3 0.2 1.5 21.9 97.5

DPS ACOundir — 10.5 16.3 21.6 0.3 8.2 16.3 23.7 21.4

ACS Cit × Cres 0.8 2.5 21.1 98.3 3.5 5.0 21.9 99.9

MMAS Cit × Cres 0.1 1.8 23.2 46.2 0.2 1.5 21.6 97.5

DPD ACOundir — 10.6 16.5 22.4 0.3 8.5 16.3 24.4 19.5

ACS Cit × Cres 1.4 2.2 21.7 98.1 2.4 4.5 19.8 99.9

MMAS Cit × Cres 0 1.9 21.7 36.1 0.2 1.4 21.9 97.1
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Table D.6: GAP results (continued). Entries of 0* in the % feas. column are

values less than 0.05. Entries of cns indicate that no feasible solutions were

produced.

Assign. no η η

Instance order Alg. Pheromone min med max % feas. min med max % feas.

gap11-1 SFO ACOundir — 16.3 24.2 32.4 0.6 14.0 24.3 34.5 37.5

ACS Cit × Cres 7.1 9.9 29.5 98.6 5.2 8.8 28.8 100.0

ACS Cres × Cres 15.9 24.6 32.1 0.8 14.3 24.3 35.3 35.9

MMAS Cit × Cres 0.4 2.6 31.8 58.9 0.3 2.5 32.5 98.8

MMAS Cres × Cres 17.4 24.6 32.2 1.1 14.5 24.2 34.9 39.4

DRO ACOundir — 16.5 24.6 32.9 0.6 14.0 24.4 35.6 38.4

ACS Cit × Cres 2.2 3.9 30.7 98.8 5.7 7.2 28.8 100.0

MMAS Cit × Cres 0.4 2.2 31.6 70.6 0.5 2.5 30.8 99.2

SMC ACOundir — 17.0 24.8 34.8 1.3 14.0 24.4 34.9 50.2

ACS Cit × Cres 5.7 8.1 29.6 99.0 6.2 8.0 29.5 100.0

ACS Cres × Cres 16.6 24.5 33.0 1.6 12.6 24.0 34.5 48.5

MMAS Cit × Cres 1.4 3.4 31.5 78.8 0.7 2.7 30.8 99.7

MMAS Cres × Cres 14.0 24.4 33.5 2.6 12.7 23.6 34.8 50.6

DMC ACOundir — 15.4 24.7 32.7 1.3 14.0 24.4 34.1 50.5

ACS Cit × Cres 6.7 9.2 30.4 99.2 7.1 8.4 30.7 100.0

MMAS Cit × Cres 1.2 3.2 32.8 78.4 0.7 2.6 32.5 99.7

DCS ACOundir — 14.0 24.4 33.5 0.8 13.5 24.3 35.3 45.8

ACS Cit × Cres 5.4 6.5 31.8 99.1 6.0 7.7 33.0 100.0

MMAS Cit × Cres 1.1 3.0 32.2 72.4 0.4 2.5 33.0 99.6

DPS ACOundir — 15.8 24.6 32.1 0.9 14.5 24.4 35.0 43.7

ACS Cit × Cres 3.0 4.2 29.1 99.2 5.4 6.9 28.2 100.0

MMAS Cit × Cres 0.4 2.4 32.6 76.9 0.5 2.6 32.9 99.6

DPD ACOundir — 17.0 24.6 33.4 0.8 13.6 24.4 37.1 41.3

ACS Cit × Cres 1.6 3.9 30.8 99.0 5.4 7.0 30.6 100.0

MMAS Cit × Cres 0.6 2.5 31.4 72.2 0.6 2.5 31.6 99.3

gap12-1 SFO ACOundir — 13.3 16.0 19.7 0* 9.9 15.9 22.8 14.5

ACS Cit × Cres 5.0 5.3 19.7 27.6 4.4 6.1 20.1 99.9

ACS Cres × Cres 13.3 16.0 18.3 0* 9.5 15.7 22.1 13.1

MMAS Cit × Cres 13.3 15.6 18.7 0* 0.4 1.2 20.7 98.0

MMAS Cres × Cres 13.5 15.2 18.7 0* 9.1 15.5 22.1 14.2

DRO ACOundir — 12.3 15.6 19.1 0* 9.5 15.8 21.8 17.8

ACS Cit × Cres 1.5 1.9 19.9 59.4 3.8 5.2 19.7 99.9

MMAS Cit × Cres 13.7 16.6 19.5 0* 0.1 1.1 20.9 97.6

SMC ACOundir — 12.7 15.7 19.3 0* 9.3 15.9 22.4 24.9

ACS Cit × Cres 3.5 5.8 20.9 91.3 4.5 5.4 19.0 100.0

ACS Cres × Cres 12.9 15.6 20.3 0* 9.2 15.7 22.5 24.0

MMAS Cit × Cres 12.4 15.6 20.2 0* 0.3 1.2 20.3 99.6

MMAS Cres × Cres 12.9 15.7 19.3 0* 9.5 15.4 22.1 26.4

DMC ACOundir — 12.5 16.0 19.7 0* 9.8 15.9 22.5 25.4

ACS Cit × Cres 3.9 5.8 19.7 86.0 4.8 5.9 18.8 100.0

MMAS Cit × Cres 13.3 15.5 20.9 0* 0.3 1.2 20.3 99.5

DCS ACOundir — 13.0 15.7 19.5 0* 9.4 15.8 21.9 20.3

ACS Cit × Cres 3.3 3.7 20.0 75.4 3.8 4.8 18.7 99.9

MMAS Cit × Cres 12.5 15.9 18.2 0* 0.2 1.0 20.4 98.5

DPS ACOundir — 12.8 16.1 19.7 0* 9.8 15.9 21.8 21.0

ACS Cit × Cres 1.3 2.1 19.2 85.9 3.2 5.0 19.8 100.0

MMAS Cit × Cres 12.5 15.3 19.2 0* 0.3 1.2 21.2 99.2

DPD ACOundir — 12.7 15.4 18.3 0* 9.2 15.9 22.7 18.9

ACS Cit × Cres 1.0 1.6 19.8 78.5 3.8 5.0 20.3 99.9

MMAS Cit × Cres 12.5 16.1 19.2 0* 0.3 1.2 20.4 99.2
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Table D.7: CSeqP results. Abbreviations used: PHassign-pairs = Sp × Cit ×
Cres; C2

it × Cres, PHsame-model = Sp × Cit × Cres; C2
it(same model).

Instance Assign. order Alg. Pheromone min med max

n20t1 SFO ACOundir — 15.5 160.3 422.4

ACS PHassign-pairs 5.2 96.6 317.2

ACS Cit × Cres 24.1 36.2 305.2

ACS PHsame-model 10.3 120.7 337.9

ACS Cres × Cres 17.2 153.4 422.4

MMAS PHassign-pairs 10.3 122.4 360.3

MMAS Cit × Cres 10.3 37.9 384.5

MMAS PHsame-model 10.3 122.4 360.3

MMAS Cres × Cres 12.1 146.6 405.2

DRO ACOundir — 12.1 110.3 351.7

ACS PHassign-pairs 10.3 15.5 270.7

ACS Cit × Cres 1.7 13.8 267.2

ACS PHsame-model 8.6 96.6 331.0

MMAS PHassign-pairs 0 87.9 336.2

MMAS Cit × Cres 0 22.4 294.8

MMAS PHsame-model 12.1 98.3 348.3

n20t2 SFO ACOundir — 20.0 272.5 695.0

ACS PHassign-pairs 27.5 205.0 585.0

ACS Cit × Cres 20.0 65.0 532.5

ACS PHsame-model 22.5 237.5 585.0

ACS Cres × Cres 20.0 255.0 695.0

MMAS PHassign-pairs 20.0 227.5 647.5

MMAS Cit × Cres 2.5 60.0 637.5

MMAS PHsame-model 20.0 227.5 647.5

MMAS Cres × Cres 20.0 252.5 695.0

DRO ACOundir — 15.0 190.0 620.0

ACS PHassign-pairs 7.5 20.0 462.5

ACS Cit × Cres 12.5 30.0 440.0

ACS PHsame-model 10.0 155.0 575.0

MMAS PHassign-pairs 0 122.5 540.0

MMAS Cit × Cres 0 47.5 525.0

MMAS PHsame-model 5.0 172.5 617.5

n20t3 SFO ACOundir — 10.3 200.0 469.0

ACS PHassign-pairs 13.8 144.8 424.1

ACS Cit × Cres 13.8 41.4 424.1

ACS PHsame-model 17.2 151.7 424.1

ACS Cres × Cres 10.3 182.8 469.0

MMAS PHassign-pairs 10.3 165.5 434.5

MMAS Cit × Cres 6.9 31.0 448.3

MMAS PHsame-model 10.3 165.5 434.5

MMAS Cres × Cres 10.3 179.3 469.0

DRO ACOundir — 6.9 131.0 441.4

ACS PHassign-pairs 3.4 13.8 313.8

ACS Cit × Cres 10.3 17.2 300.0

ACS PHsame-model 6.9 113.8 389.7

MMAS PHassign-pairs 3.4 89.7 365.5

MMAS Cit × Cres 0 20.7 365.5

MMAS PHsame-model 6.9 117.2 406.9
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Table D.7: CSeqP results (continued). Abbreviations used: PHassign-pairs =

Sp × Cit × Cres; C2
it × Cres, PHsame-model = Sp × Cit × Cres; C2

it(same model).

Instance Assign. order Alg. Pheromone min med max

n20t4 SFO ACOundir — 110.0 750.0 1570.0

ACS PHassign-pairs 90.0 540.0 1310.0

ACS Cit × Cres 160.0 250.0 1310.0

ACS PHsame-model 110.0 570.0 1320.0

ACS Cres × Cres 110.0 700.0 1570.0

MMAS PHassign-pairs 100.0 650.0 1410.0

MMAS Cit × Cres 10.0 150.0 1400.0

MMAS PHsame-model 100.0 650.0 1410.0

MMAS Cres × Cres 70.0 680.0 1570.0

DRO ACOundir — 70.0 520.0 1350.0

ACS PHassign-pairs 40.0 80.0 1160.0

ACS Cit × Cres 60.0 110.0 1160.0

ACS PHsame-model 40.0 460.0 1320.0

MMAS PHassign-pairs 20.0 480.0 1380.0

MMAS Cit × Cres 0 120.0 1240.0

MMAS PHsame-model 50.0 480.0 1280.0

n20t5 SFO ACOundir — 10.7 113.3 252.0

ACS PHassign-pairs 14.7 116.0 240.0

ACS Cit × Cres 1.3 16.0 240.0

ACS PHsame-model 16.0 100.7 240.0

ACS Cres × Cres 1.3 85.3 252.0

MMAS PHassign-pairs 1.3 100.7 245.3

MMAS Cit × Cres 0 16.0 249.3

MMAS PHsame-model 1.3 100.7 245.3

MMAS Cres × Cres 1.3 85.3 252.0

DRO ACOundir — 1.3 76.0 242.7

ACS PHassign-pairs 0 12.0 192.0

ACS Cit × Cres 0 12.0 163.3

ACS PHsame-model 1.3 68.0 242.7

MMAS PHassign-pairs 0 26.7 243.3

MMAS Cit × Cres 0 10.7 176.0

MMAS PHsame-model 1.3 68.0 243.3

n40t1 SFO ACOundir — 27.4 151.4 456.8

ACS PHassign-pairs 26.7 122.6 419.2

ACS Cit × Cres 12.3 24.7 336.3

ACS PHsame-model 26.7 137.7 430.1

ACS Cres × Cres 26.0 147.9 445.9

MMAS PHassign-pairs 26.7 136.3 429.5

MMAS Cit × Cres 6.8 21.2 377.4

MMAS PHsame-model 26.7 136.3 429.5

MMAS Cres × Cres 27.4 149.3 452.1

DRO ACOundir — 20.5 103.4 375.3

ACS PHassign-pairs 8.9 11.6 220.5

ACS Cit × Cres 1.4 8.2 220.5

ACS PHsame-model 21.2 98.6 327.4

MMAS PHassign-pairs 0.7 18.5 294.5

MMAS Cit × Cres 0 8.9 331.5

MMAS PHsame-model 24.7 98.6 349.3
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Table D.7: CSeqP results (continued). Abbreviations used: PHassign-pairs =

Sp × Cit × Cres; C2
it × Cres, PHsame-model = Sp × Cit × Cres; C2

it(same model).

Instance Assign. order Alg. Pheromone min med max

n40t2 SFO ACOundir — 60.6 287.2 711.7

ACS PHassign-pairs 60.6 260.6 752.1

ACS Cit × Cres 35.1 52.1 488.3

ACS PHsame-model 57.4 267.0 727.7

ACS Cres × Cres 73.4 279.8 720.2

MMAS PHassign-pairs 55.3 267.0 676.6

MMAS Cit × Cres 12.8 45.7 622.3

MMAS PHsame-model 55.3 267.0 676.6

MMAS Cres × Cres 72.3 279.8 734.0

DRO ACOundir — 43.6 197.9 536.2

ACS PHassign-pairs 11.7 28.7 433.0

ACS Cit × Cres 9.6 23.4 321.3

ACS PHsame-model 54.3 190.4 505.3

MMAS PHassign-pairs 2.1 43.6 495.7

MMAS Cit × Cres 2.1 25.5 472.3

MMAS PHsame-model 34.0 190.4 539.4

n40t3 SFO ACOundir — 43.9 243.9 515.2

ACS PHassign-pairs 45.5 198.5 501.5

ACS Cit × Cres 19.7 30.3 412.1

ACS PHsame-model 39.4 216.7 506.1

ACS Cres × Cres 43.9 233.3 560.6

MMAS PHassign-pairs 45.5 215.2 492.4

MMAS Cit × Cres 9.1 18.2 436.4

MMAS PHsame-model 45.5 215.2 492.4

MMAS Cres × Cres 43.9 231.8 545.5

DRO ACOundir — 22.7 139.4 407.6

ACS PHassign-pairs 9.1 13.6 318.2

ACS Cit × Cres 7.6 10.6 315.2

ACS PHsame-model 22.7 134.8 383.3

MMAS PHassign-pairs 4.5 25.8 354.5

MMAS Cit × Cres 4.5 10.6 345.5

MMAS PHsame-model 19.7 134.8 369.7

n40t4 SFO ACOundir — 130.3 560.6 1233.3

ACS PHassign-pairs 90.9 469.7 1127.3

ACS Cit × Cres 42.4 87.9 875.8

ACS PHsame-model 103.0 509.1 1106.1

ACS Cres × Cres 127.3 536.4 1187.9

MMAS PHassign-pairs 121.2 509.1 1078.8

MMAS Cit × Cres 12.1 57.6 1042.4

MMAS PHsame-model 121.2 509.1 1078.8

MMAS Cres × Cres 130.3 536.4 1193.9

DRO ACOundir — 87.9 351.5 897.0

ACS PHassign-pairs 12.1 45.5 606.1

ACS Cit × Cres 6.1 18.2 560.6

ACS PHsame-model 63.6 339.4 957.6

MMAS PHassign-pairs 0 69.7 769.7

MMAS Cit × Cres 6.1 33.3 903.0

MMAS PHsame-model 78.8 339.4 833.3
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Table D.7: CSeqP results (continued). Abbreviations used: PHassign-pairs =

Sp × Cit × Cres; C2
it × Cres, PHsame-model = Sp × Cit × Cres; C2

it(same model).

Instance Assign. order Alg. Pheromone min med max

n40t5 SFO ACOundir — 26.1 108.2 235.2

ACS PHassign-pairs 29.0 115.3 223.3

ACS Cit × Cres 11.4 16.5 202.6

ACS PHsame-model 20.7 102.3 219.9

ACS Cres × Cres 23.0 94.9 228.7

MMAS PHassign-pairs 20.7 102.8 221.0

MMAS Cit × Cres 6.3 10.2 202.8

MMAS PHsame-model 20.7 102.8 221.0

MMAS Cres × Cres 21.6 94.9 226.1

DRO ACOundir — 15.3 65.6 166.2

ACS PHassign-pairs 2.8 6.3 150.9

ACS Cit × Cres 2.8 4.8 115.9

ACS PHsame-model 13.4 63.4 171.6

MMAS PHassign-pairs 0.6 11.6 148.0

MMAS Cit × Cres 2.8 8.0 136.1

MMAS PHsame-model 14.8 63.4 164.8

n60t1 SFO ACOundir — 39.1 145.8 453.4

ACS PHassign-pairs 41.6 140.8 540.8

ACS Cit × Cres 13.0 26.5 336.6

ACS PHsame-model 39.1 137.0 406.3

ACS Cres × Cres 39.1 143.7 439.1

MMAS PHassign-pairs 36.6 137.4 418.5

MMAS Cit × Cres 11.3 20.2 336.6

MMAS PHsame-model 36.6 137.4 418.5

MMAS Cres × Cres 39.1 144.5 437.0

DRO ACOundir — 34.5 99.6 322.3

ACS PHassign-pairs 8.8 11.8 241.6

ACS Cit × Cres 17.2 67.6 224.4

ACS PHsame-model 32.4 96.6 308.4

MMAS PHassign-pairs 2.5 13.4 242.0

MMAS Cit × Cres 0.8 7.6 244.1

MMAS PHsame-model 28.2 96.6 281.5

n60t2 SFO ACOundir — 97.4 280.3 665.8

ACS PHassign-pairs 101.3 284.2 789.5

ACS Cit × Cres 30.3 44.7 532.2

ACS PHsame-model 80.3 269.1 653.9

ACS Cres × Cres 93.4 275.7 744.1

MMAS PHassign-pairs 77.0 267.8 655.9

MMAS Cit × Cres 23.7 36.8 511.2

MMAS PHsame-model 77.0 267.8 655.9

MMAS Cres × Cres 94.1 276.3 664.5

DRO ACOundir — 63.8 190.1 441.4

ACS PHassign-pairs 18.4 25.7 371.7

ACS Cit × Cres 2.0 17.1 307.9

ACS PHsame-model 50.7 186.8 434.9

MMAS PHassign-pairs 5.9 30.3 346.7

MMAS Cit × Cres 0.7 17.1 372.4

MMAS PHsame-model 65.8 186.8 433.6
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Table D.7: CSeqP results (continued). Abbreviations used: PHassign-pairs =

Sp × Cit × Cres; C2
it × Cres, PHsame-model = Sp × Cit × Cres; C2

it(same model).

Instance Assign. order Alg. Pheromone min med max

n60t3 SFO ACOundir — 70.5 249.5 548.6

ACS PHassign-pairs 70.5 241.9 581.9

ACS Cit × Cres 19.0 26.7 371.4

ACS PHsame-model 65.7 231.4 526.7

ACS Cres × Cres 70.5 241.9 549.5

MMAS PHassign-pairs 72.4 231.4 524.8

MMAS Cit × Cres 5.7 16.2 422.9

MMAS PHsame-model 72.4 231.4 524.8

MMAS Cres × Cres 69.5 243.8 549.5

DRO ACOundir — 29.5 139.0 377.1

ACS PHassign-pairs 7.6 10.5 297.1

ACS Cit × Cres 2.9 38.1 297.1

ACS PHsame-model 35.2 136.2 378.1

MMAS PHassign-pairs 3.8 12.4 301.9

MMAS Cit × Cres 1.0 7.6 308.6

MMAS PHsame-model 35.2 136.2 380.0

n60t4 SFO ACOundir — 165.5 512.1 1143.1

ACS PHassign-pairs 175.9 482.8 1234.5

ACS Cit × Cres 51.7 67.2 775.9

ACS PHsame-model 160.3 475.9 1024.1

ACS Cres × Cres 136.2 500.0 1103.5

MMAS PHassign-pairs 155.2 481.0 1062.1

MMAS Cit × Cres 20.7 43.1 910.3

MMAS PHsame-model 155.2 481.0 1062.1

MMAS Cres × Cres 136.2 498.3 1091.4

DRO ACOundir — 101.7 306.9 801.7

ACS PHassign-pairs 24.1 37.9 644.8

ACS Cit × Cres 3.4 160.3 579.3

ACS PHsame-model 89.7 301.7 813.8

MMAS PHassign-pairs 0 32.8 627.6

MMAS Cit × Cres 1.7 20.7 613.8

MMAS PHsame-model 106.9 301.7 853.4

n60t5 SFO ACOundir — 27.8 105.0 216.7

ACS PHassign-pairs 34.0 120.1 227.2

ACS Cit × Cres 9.3 13.0 162.8

ACS PHsame-model 27.6 101.8 207.3

ACS Cres × Cres 21.5 95.7 216.7

MMAS PHassign-pairs 22.8 101.6 209.8

MMAS Cit × Cres 1.1 11.7 195.0

MMAS PHsame-model 22.8 101.6 209.8

MMAS Cres × Cres 26.5 97.0 216.7

DRO ACOundir — 19.8 60.5 145.2

ACS PHassign-pairs 2.5 4.6 130.1

ACS Cit × Cres 0.7 13.7 114.9

ACS PHsame-model 20.5 59.4 134.3

MMAS PHassign-pairs 0.7 8.5 116.7

MMAS Cit × Cres 1.1 6.8 117.8

MMAS PHsame-model 18.1 59.3 147.9
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Table D.7: CSeqP results (continued). Abbreviations used: PHassign-pairs =

Sp × Cit × Cres; C2
it × Cres, PHsame-model = Sp × Cit × Cres; C2

it(same model).

Instance Assign. order Alg. Pheromone min med max

n80t1 SFO ACOundir — 45.5 143.6 446.7

ACS PHassign-pairs 45.8 159.4 600.0

ACS Cit × Cres 17.6 25.5 265.2

ACS PHsame-model 38.2 137.9 440.0

ACS Cres × Cres 45.2 142.7 439.7

MMAS PHassign-pairs 42.7 138.2 438.5

MMAS Cit × Cres 11.5 19.7 313.3

MMAS PHsame-model 42.7 138.2 438.5

MMAS Cres × Cres 44.5 142.1 433.0

DRO ACOundir — 36.1 97.9 266.1

ACS PHassign-pairs 5.5 12.4 226.1

ACS Cit × Cres 23.9 70.9 176.7

ACS PHsame-model 31.5 96.4 255.2

MMAS PHassign-pairs 4.8 14.2 225.5

MMAS Cit × Cres 3.9 8.5 211.5

MMAS PHsame-model 37.9 96.1 262.4

n80t2 SFO ACOundir — 79.1 268.8 586.5

ACS PHassign-pairs 103.7 326.0 819.5

ACS Cit × Cres 29.3 39.5 532.1

ACS PHsame-model 86.5 261.9 553.5

ACS Cres × Cres 79.1 264.7 578.1

MMAS PHassign-pairs 80.0 260.9 591.6

MMAS Cit × Cres 11.2 34.0 465.1

MMAS PHsame-model 80.0 260.9 591.6

MMAS Cres × Cres 79.5 266.5 578.1

DRO ACOundir — 68.8 180.5 431.2

ACS PHassign-pairs 9.8 26.0 322.8

ACS Cit × Cres 0.5 62.3 273.0

ACS PHsame-model 70.7 178.6 415.8

MMAS PHassign-pairs 5.6 26.0 316.3

MMAS Cit × Cres 6.5 20.9 300.9

MMAS PHsame-model 70.7 178.1 454.9

n80t3 SFO ACOundir — 80.1 248.6 549.3

ACS PHassign-pairs 71.2 291.1 609.6

ACS Cit × Cres 12.3 20.5 427.4

ACS PHsame-model 53.4 236.3 516.4

ACS Cres × Cres 82.2 243.2 550.0

MMAS PHassign-pairs 84.2 237.0 534.2

MMAS Cit × Cres 8.2 13.0 455.5

MMAS PHsame-model 84.2 237.0 534.2

MMAS Cres × Cres 82.2 245.2 540.4

DRO ACOundir — 41.8 134.9 345.2

ACS PHassign-pairs 2.7 7.5 267.1

ACS Cit × Cres 6.8 74.0 224.7

ACS PHsame-model 41.8 133.6 354.1

MMAS PHassign-pairs 1.4 8.9 334.2

MMAS Cit × Cres 0.7 6.2 297.9

MMAS PHsame-model 41.8 133.6 348.6
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Table D.7: CSeqP results (continued). Abbreviations used: PHassign-pairs =

Sp × Cit × Cres; C2
it × Cres, PHsame-model = Sp × Cit × Cres; C2

it(same model).

Instance Assign. order Alg. Pheromone min med max

n80t4 SFO ACOundir — 203.7 501.2 1074.4

ACS PHassign-pairs 176.8 519.5 1365.9

ACS Cit × Cres 36.6 54.9 808.5

ACS PHsame-model 180.5 478.0 1046.3

ACS Cres × Cres 202.4 491.5 1070.7

MMAS PHassign-pairs 191.5 480.5 1034.2

MMAS Cit × Cres 19.5 41.5 900.0

MMAS PHsame-model 191.5 480.5 1034.2

MMAS Cres × Cres 178.0 495.1 1057.3

DRO ACOundir — 120.7 296.3 682.9

ACS PHassign-pairs 15.9 29.3 517.1

ACS Cit × Cres 45.1 176.8 457.3

ACS PHsame-model 120.7 292.7 665.9

MMAS PHassign-pairs 3.7 29.3 591.5

MMAS Cit × Cres 3.7 17.1 546.3

MMAS PHsame-model 114.6 292.7 659.8

n80t5 SFO ACOundir — 31.5 103.8 203.2

ACS PHassign-pairs 36.3 136.7 230.1

ACS Cit × Cres 11.5 13.6 166.1

ACS PHsame-model 33.9 101.2 194.6

ACS Cres × Cres 32.8 97.4 197.5

MMAS PHassign-pairs 33.9 101.6 194.6

MMAS Cit × Cres 3.6 12.2 175.9

MMAS PHsame-model 33.9 101.6 194.6

MMAS Cres × Cres 29.7 98.1 197.5

DRO ACOundir — 22.3 58.3 121.9

ACS PHassign-pairs 0 4.7 105.6

ACS Cit × Cres 8.4 39.2 105.6

ACS PHsame-model 22.0 57.5 125.8

MMAS PHassign-pairs 3.1 7.8 105.6

MMAS Cit × Cres 0.8 4.9 105.6

MMAS PHsame-model 22.2 57.4 129.7
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Notes in Computer Science, Springer-Verlag, pp. 100–110.
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Ant Algorithms, Brussels, Belgium, Vol. 2463 of Lecture Notes in Computer Science,
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Appendix F

Notation Used in Thesis

Table F.1: Notation used in thesis.

Symbol Meaning
Constructive heuristics
C set of solution components
ci ∈ C solution component
s sequence of solution components 〈ci, . . . , ck〉
sp partial sequence of solution components
N(sp) set of solution components that may be added to the partial solution sp

A constructive algorithm
TA construction tree defined by A
S set of solution sequences
S set of feasible solutions to a problem
s a solution
Ssp set of solutions which the partial sequence sp could represent once completed
ssp partially completed solution represented by the partial sequence sp

ss solution represented by the sequence s

Ss set of sequences corresponding to the solution s
Pheromone representations, miscellaneous symbols
C An arbitrary pheromone representation (set of solution characteristics)
c ∈ C A solution characteristic
Entities that appear in pheromone representations
Cit Set of items in an assignment type problem
Cres Set of resources in an assignment type problem
P Set of positions of solution components in a sequence
Sp Set of partial solutions/sequences

230


