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Abstract

In this paper, we introduce a new method for
structuring complex data sets into clusters. The
method relies on local actions in a population
of simple, ant-like processes, so that global data
structures emerge in a self-organized fashion. The
model provides a setting to explore the role of di-
versity and local adaptive behavior in shaping the
collective phenotype of the population.

1 Background

Population thinking in biology dates back at least to Dar-
win’s seminal work on the principles of natural selection
[1). More recently, the study of insect societies or the
immune system, to name only two examples in the bio-
logical realms, have focused on the qualitatively distinct
properties which can arise at the collective level as a res-
ult of local processes. The possible functional relevance
of these global states and their constraining coupling to
the local processes from which they emerge has promp-
ted the development of new theories and techniques to
elucidate the micro-macro links.

In particular, the advent of powerful computers over
the past two decades has offered an experimental setup
in which to explore some of the basic population effects
exhibited in biological systems. At the same time, nat-
ural systems have begun to provide powerful insights
toward the design of distributed forms of computation
[2, 3]. The basic idea is to search for simple behavioral
rules at the individual level which translate into an over-
all population ”phenotype” that embodies the result of
some computation. Whenever such rules are found, they
open up the possibility to exploit the intrinsic parallel-
ism in collections of locally interacting processes that
perform in the absence of centralized controls. Several
classical problem-solving and optimization tasks have re-
cently been dealt with in such a fashion, from chrypt-
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arithmetic problems [4], to the sorting of objects in se-
gregated piles [2], to the optimal partitioning of graphs
[5], among others.

The work described in this paper explores several is-
sues of general relevance to collective behavior and self-
organization in populations, in particular the functional
role and ecological expression of population diversity and
individual behavioral adaptation. The study is carried
on in the specific context of a novel approach to explor-
atory data analysis, akin to cluster analysis and multi-
dimensional scaling, which provides a clear set of per-
formance metrics against which different populations of
clustering ant-like processes can be compared. In the
next subsection, we review an earlier study of ant-like
colonies by Deneubourg and colleagues [2] which inspired
the present model. We then briefly introduce standard
approaches to structuring multidimensional data sets,
as well as some more recent development in this area,
prompted by the need to support explorations in com-
plex information spaces such as large textual databases.

This should set the stage for the present work. A more
complete description of the task domain, along with the
outgrowth of a practical clustering system, is beyond the
scope of this paper, and is being reported elsewhere [6].
Instead, in the following sections, we focus on the self-
organized properties in populations of simple autonom-
ous processes. Section 2 describes the individual pro-
cesses in our system, the basic rules governing their be-
havior, and the environment in which they evolve. In
section 3, we introduce an element of diversity in the
population, and endow the individual ant-like agents!
with memory and context-dependent behavior. We then
present the results from stochastic simulations of the
model. Measures designed to track the dynamics of the
self-organized clustering are applied to populations with
varying de grees of diversity and individual complexity.
Finally, we close with a discussion of our results and in-

1We use the terms agent, process, and ant interchangeably. The
latter is used for convenience only; it is not meant to imply any
biological realism in our model agents.



502 Erik D. Lumer and Baldo Faieta

dicate future developments.

1.1 Collective Sorting in Ant-Like Colonies

In section 2, we will introduce a distributed clustering
method for multidimensional data sets inspired by a re-
cent study of the manner in which ant colonies sort their
brood [2]. In the model of Deneubourg and coworkers,
lightweight ant-like agents move at random on a 2-d grid
on which objects have been scattered. The agents do not
communicate with each other and can only perceive their
surrounding local environment. When they bump into
an object, the probability that they pick it up decreases
with the density of and similarity with other objects in
the vicinity. Likewise, the probability of dropping an
object carried by an agent is an increasing function of
a simple similarity measure within a local region. This
simple behavior, combined with a positive feedback from
the environment which is reshaped by the the ongoing
collective action, translates into the organization of ini-
tially dispersed objects into stacks of identical elements.

Deneubourg and coworkers restricted their studies to
environments made of either identical objects or two dis-
tinct types of objects. Thus, the collective ”phenotype”
of their ant colonies was one of sorting, a fairly trivial
computational task to carry on a conventional computer,
although quite remarkably performed by social insects
in the absence of central controls. Nevertheless, as we
will show in section 3, their algorithm can be general-
ized to objects which differ along a continuous similarity
measure, leading to a novel clustering method for multi-
dimensional data sets with quite interesting properties.
Before we turn to this algorithm, we briefly recall what
cluster analysis and multidimensional scaling techniques
are about.

1.2 Structuring Data and Ezplorations in
Complex Information Space

Clustering and scaling techniques have been widely used
in a variety of domains, as a way to probe underlying
structures in complex data sets [7]. In particular, these
techniques have seen a renewed interest in the context
of information access. Indeed, in complex information
spaces, such as text databases, it is important to provide
means of representing the overall structure of the data
sets, so as to support effective explorations of their con-
tent [8, 9]. Furthermore, some effort has been put in
developing methods which reorganize data sets in real
time, so as to allow ongoing interactions between an in-
formation system and its user.

The problem that cluster analysis addresses is the fol-
lowing one [7]: given a set of elements, and a similarity
measure between pairs of elements, find an algorithm for
grouping elements in clusters, so that similar elements
end up in the same cluster. In general, each datum

may be represented as a point in some higﬁ-dimensional
space, and the number of clusters is not known a priori.
Clearly, this problem does not have a best solution, and
many statistical techniques have been proposed.

There are two major families of clustering methods:
the hierarchical ones, in which clusters are formed by a
process of agglomeration or division, and the partition-
ing methods, such as the k-means algorithm in which
elements are allowed to move between clusters at differ-
ent stages of the analysis, so as to join the cluster with
the nearest centroid. In the partitioning methods, this
process continues iteratively until convergence is reached
with a predefined number of clusters. Hierarchical meth-
ods are computationally expensive, but analyze the data
at different levels of granularity, while the faster par-
titioning methods establish clusters devoid of internal
structure.

Multidimensional scaling represents a different class
of numerical techniques which extract some global struc-
ture out of data sets. These methods are designed to
construct a map displaying a faithful representation of
the relationships between a collection of elements, given
only a matrix of pairwise distances. Typically, the map
will be in two or three dimensions, so as to allow its visu-
alization. In addition to well established multidimen-
sional scaling methods [10], recent stochastic techniques,
such as simulated annealing [11], can be used in build-
ing global maps which minimize some “stress” function,
although their computational cost is still very expensive.

As this brief survey indicates, effective exploratory
data analysis imposes a trade-off between, one the one
hand, responsiveness, and on the other, the complex-
ity of representations constructed by structuring meth-
ods. In this context, the intrinsic parallelism in the
self-organizing process of collective sorting motivates the
search for similar paradigms to structure more complex
data sets. In the next section, we develop such a process.

2 Self-Organized Clustering

We model the basic ants and their environment as fol-
lows. Ants perform a random walk on a 2d-grid, on which
elements have been laid out at random, so that a site in
the grid is occupied by at most one element. In fact,
the dimensions of the grid are such that its number of
sites exceeds the number of elements by roughly an or-
der of magnitude. Furthermore, the number of elements
exceeds the number of ants by at least another order of
magnitude, so as to translate ants actions over a short
period of time into small fluctuations of the environment.

The simulation evolves in discrete time steps. At each
step, an ant is selected at random and can either pick or
drop an element at its current location, given that there
is either an element at that location or that the ant is
carrying one, respectively. Assuming that an unloaded
ant comes across an element, the probability of picking



that element increases with low density and decreases
with the similarity of the element vis-a-vis the other ele-
ments in a small surrounding area. (In what follows, we
define this area as a square of d x d nodes) . Accordingly,
the probability of picking an element, say 4, is defined as

Ppick(3) = (k,,Tkpf(—i—))z 0]

where k, is a constant and f(i) a local estimation of the
density of elements and their similarity to 1.

By the same token, the probability that an ant-like
process will drop a carried element should increase with
the density of similar elements in its surrounding area. A
simple functional relation which satisfies this tendency,
and the one being used here, is given by

Pdrop(i) = { ff(Z) if f(z) < ka (2)

otherwise
where kg is a constant. In the probabilities for manipu-
lating elements expressed by Ppick and Purop, the density
dependent function f(3) for an element i, at a particular
grid location, is defined as

f(i)={ g%E,-(l—d(i,j)/a) if £>0

otherwise

©))

In this expression, the sum extends over all the elements
in the local area surrounding element %, and d(%, ) meas-
ures the dissimilarity between the pair of elements (3, j).
The constant o scales the dissimilarities. For the sake of
concreteness, let us assume here that the elements can
be represented as points in an n-dimensional space, so
that d(i,j) is simply the euclidian distance between 1
and j. The normalizing term d? equals the total num-
ber of sites in the local area of interest, and introduces
a density dependency in f(z). As a result, the maximum
of f is reached if and only if all the sites in the neighbor-
hood are occupied by identical elements (i.e. d(¢,j) = 0),
in which case f = 1. Whenever a loaded ant decides to
drop its element, it looks for the first empty site in its
vicinity in which to do so. A time step finishes with the
selected ant moving to one of its four adjacent nodes,
each direction of motion being equally likely.

In summary, the simulation consists in cycling through
a loop involving: 1) the selection of an ant, 2) if appro-
priate, the manipulation of a local object by that ant,
and 3) a random unitary displacement on the grid. We
contend that the collection of ants so-defined performs a
heuristic mapping of the data set onto the 2-d grid. This
mapping amounts to a dynamic organization of data in
a fashion halfway between a cluster analysis - in so far
as elements belonging to different concentration areas in
their n-dimensional space end up in different clusters -
and a multidimensional scaling, in which an intracluster
structure is constructed. Notice, however, that the rel-
ative positioning of clusters on the grid is arbitrary?.

2By relaxing the global positioning constraints, we are able to
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Figure 1: Data Set composed of 400 points sampled
with equal probabilities from 4 gaussian distribu-
tions. The distributions are defined according to:
(N(0,2),N(0,2)), (N(0,2),N(8,2)), (N(8,2),N(0,2)),
and (N(8,2),N(8,2)).

This process is illustrated in the following example.
We generated a 2d data set composed of 400 points
sampled with equal probability from one out of four
bivariate gaussian distributions. The distributions have
identical variances but shifted means. The actual scatter
plot of the sampled points in their 2d space is shown in
figure 1 and the properties of the distributions are indic-
ated in the accompanying caption. The data points were
laid out at random locations on a 52x52 grid, populated
by 40 ants. The other parameters of the simulation are
indicated in the caption of figure 2a, which shows the
initial distribution of data points on the grid. Notice
that each element in this figure is labeled according to
its originating distribution for illustrative purpose only.
This information is not available to the ants. Figure 2b
shows the layout of elements on the grid after 50 cycles of
the simulation, each cycle being composed of 10,000 ant
selections. As can be seen, the data points are clustered
into patches , each one made of points issued mostly from
a single statistical distribution. However, the number of
patches exceeds and thus poorly reflects the number of
distributions underlying the data set.

In the next section, we discuss ways in which the
colony can be modified to fix this discrepancy. We
also investigate how the speed at which stable struc-
tures are constructed depends on the properties of in-
dividual members of the colony. To close this section, let
us emphasize that all the results presented below have

devise a faster algorithm. Also, in the context of textual databases,
the relative positioning of coarse clusters is likely to be meaningless.
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Figure 2: Layouts of elements on a 52x52 grid. Elements
sampled from different distributions are represented by
different symbols. a (top): Initial layout. b (bottom):
Layout after 50 cycles using a population of basic clus-
tering agents.

been verified to hold qualitatively for a variety of data
sets, including those embedded in higher dimensions. For
instance, we have applied successfully our algorithm to
synthetic data sets embedded in an 8-dimensional space.
Performance seems rather independent of the size of the
data set provided that the following criterion is met:
sampling size must be sufficiently large to produce loc-
ally dense sets of similar points, that is to say the average
number of points differing from a given one by less than
the constant o must be of the order of the sensing surface
d? of an agent moving on its grid.

3 Population Diversity and Local Adapt-
ive behavior

In this section, we shall introduce and compare three
variants of the basic population of clustering ants con-
sidered above. First, we substitute to the homogeneous
population one made of individuals possessing different

displacement speeds and sensitivities to object similarit-
ies. Also, we endow the ants with an evanescent memory
for locations where they recently succeeded in dropping
an element. Finally, we consider the impact of individual
behavioral changes at the collective phenotipic level.

Before we turn to this study, let us introduce a num-
ber of dynamic measures to track the unfolding of the
clustering process. We compare various runs by means
of three measures. First, we compute at each cycle the
spatial entropy on the grid, and this, at different granu-
larities. This measure informs us of the relative order on
the grid, so that larger clusters will translate into lower
entropies [13]. Such a measure, while correlating well
with the visual feedback that an animation of the run
provides, does not indicate whether similar points end up
at neighboring locations on the grid in agreement with
the underlying statistics of the data set. This possibility
is measured by a criterion of global fit, which is simply an
average over all the measures f(z) for a given layout on
the grid. Finally, the temporal profile of the total num-
ber of drops is recorded as a measure of the effectiveness
of object manipulations performed in a colony.

3.1 Diverse vs. Homogeneous Populations

It is often argued that diversity plays a crucial role in
shaping up the properties of populations. One obvious
biological role of diversity is as a source of variability
in selectionist systems. However, from a computational
view, the issue has received attention only sporadically
(e.g- [4, 12)).

Our system offers a nice domain in which to quantify
the impact of diversity at a macroscopic level. Indeed,
we introduce variability by virtue of a range of paces,
comprised between 1 and V.., the latter being defined
as the quantal displacement of an ant in a single time
step along a given grid axis. At the same time, the pace
is coupled in an inverse manner to the pickiness of an
ant: fast moving ants have a more liberal measure of
similarity, while slow moving ants are very selective in
their similarity criterion. This trend is expressed quant-
itatively in the following manner. Let v be the pace of
an ant. The local density function f computed by that
ant now reads as

£6) { gfzj(l—m%i%%m)

As an example, a population of ants is built by select-
ing for each individual a pace chosen uniformly in the
range (1,6). Figure 3a shows the result of their cluster-
ing after 50 cycles. The data and initial conditions are
identical to those associated with figures 2. Notice now
that most of the elements are distributed across only
four clusters, in a way which reflects their underlying
statistical distributions. Figure 3b shows the equivalent

iff>0
otherwis

(4)
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Figure 3: Layouts after 50 cycles. a (top): Diverse pop-
ulation of agents with paces in the range (0,6) and in-
dividual memory buffers for up to 8 items. b (bottom):
Homogeneous population of ants with same memory set-
ting as in fig. 3a.
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layout using a homogeneous population of ants moving
at a median pace of 3 sites/step. We observe in this case
a larger number of clusters. The differences between the
two populations is further characterized in figures 4a-c.
In figure 4a, we compare the time course of the mean
fit for the two populations. While the plot indicates a
more rapid stabilization of the overall fit in the homo-
geneous population, the saturation takes place at a value
which is inferior to the one in the diverse population.
The faster convergence of elements in the homogeneous
population is co nfirmed in figure 4b, where the spatial
entropies are shown. Notice that the slightly lower en-
tropy of the grid organized by homogeneous ants is an
artifact of the proximity between two pairs of large, al-
though distinct clusters. Finally, figure 4c indicates that
the better clustering achieved by the diverse population
involves a smaller number of manipulations.

These results are observed in a number of runs with
different initial conditions and for a variety of data sets.
The diverse population seems to outperform a homogen-
eous one for the following reason: the fast, sloppy ants
rapidly seggregate elements on a coarse scale, as they
tend to bring elements somewhat in the right “ballpark”.
On the other hand, the slow and picky ants act more loc-
ally, by sorting and placing elements with greater care.

Finaly, let us point out that the clustering process is
density dependent in the n-dimensional space of the data
sets. Indeed, the largest concentrations of element to
appear on the grid, in fact the nucleuses for the surviving
clusters, correspond to data points near the peaks of their
original distribution, as such points are sampled more
often.

3.2 Agents with Short-Term Memory

In runs presented in the previous subsections, the ants
were endowed with a memory for the m most recent ele-
ments dropped, along with their new location. (In these
runs, the memory was set to m = 8). When a new ele-
ment is picked by an ant-like process, a comparison is
made with the elements in memory, and the ant auto-
matically goes toward the location of the memorized ele-
ment most similar to the one just collected. This beha-
vior leads to the formation of a smaller number of stat-
istically equivalent clusters, a desirable property indeed.
Figures 5a~c illustrate the impact of varying the memory
size in individuals forming a diverse population. As we
can see, the quality of the clustering depends strongly on
the size of the memory buffers, with performance peeking
for a memory size of around six items.

8.8 Behavioral Switches

Although the clustering process is stochastic, and allows
for ongoing fluctuations at a micro-scale, it is basically ir-
reversible in that the spatial entropy gradually decreases
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Figure 6: Self-regulated behavioral switching from gath-
ering elements to destroying clusters. a (top): Grid
shortly after an ant has begun destroying the upper left
cluster. b (middle): 5 cyles later. Ants have reverted to
gathering the disseminated elements. ¢ (bottom): As a
result, elements issued from the same statistical distri-
butionend up in the same cluster.
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with time. As elements get positioned in an acceptable
neighborhood, they become less likely to be moved again
towards another location. Accordingly, the ants will pick
and drop fewer elements as time goes on. This latter
property can be exploited in an adaptive behavior which
introduces a sort of annealing in the system. Thus, we
modify the individual agents so that each one can switch
from gathering elements to destroying clusters if it hasn’t
manipulated an element for more than a preset number
of cycles.

The ensuing collective dynamics is illustrated in fig-
ures 6a-c. The leftmost figure should be compared with
figure 5b, which showed the clusters built after 50 cycles
by diverse agents with a memory buffer sized to 4 items.
In the present case, the grid is displayed after 55 cycles.
One can see that the upper left clusters has been des-
troyed, and that this results in a regrouping of its ele-
ments in a single cluster, as illustrated in figure 6b after
60 cycles of the simulation. Indeed, following this action
by a single agent, most of the other processes will engage
in gathering the disseminated elements, thus preventing
for a while any further destruction of clusters.

4 Conclusions

In this paper, we presented a simple model of clustering,
which is performed in a fully decentralized fashion by
a population of simple processes. This model offers a
controlled setting in which to evaluate how changes in
local properties translate into different performance at
the system level. In particular, we observed that diverse
populations of clustering agents consistently outperform
homogeneous groups. Furthermore, we found that local
behavioral changes, based on prior experience, can be
manipulated to produce desired macroscopic effects. We
have considered two kinds of adaptations, on the one
hand via a memory for relevant locations, and on the
other hand, in the form of behavioral switches regulated
by the global feedback from the environment.

Interestingly enough, clusters which uncover global
structures in a data set are constructed by local agents
with no mutual interactions other than indirectly via
the environment which they modify. This collective pro-
cess amounts to a heuristic mapping of a possibly high-
dimensional and sparse data set onto a plane, in a way
which preserves neighborhood relationships as much as
possible. In this plane, the emergent structure of a data
set can be readily seen. Clustering is nonparametric,
insofar as the number of constructed clusters is not spe-
cified a priori. This property stands in contrast with the
parametric nature of most clustering algorithms. Notice
also that the same collective process can be generalized
to more complex environments, such as landscapes and
3d lattices [6].

These observations suggest that our mechanism could
be integrated in a continuously evolving system used
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to visualize, organize and analyze interactively unstruc-
tured data sets. As a matter of fact, the experiments
presented here have allowed us to derive a novel cluster-
ing algorithm and system, which capture this function-
ality. Preliminary studies applied to textual databases
have been encouraging, and further results will be repor-
ted in the near future [6].
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