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Abstract: 
An artificial Ants Sleeping Model (ASM) and Adaptive 

Artificial Ants Clustering .4lgorithm (A'C) are presented to 
resolve the clustering pmblem in data mining by simulating 
the behaviors of gregarious ant colonies. In the ASM mode, 
each data is represented bj an a ent The agents' environment 
is a two-dimensionsl grid. In A C, the agents ean be formed 
into high-quality clusters by making simple move aecording to 
little local neighborhood information and the parameters are 
selected and ad~wted qdaptively. Experimental results on 
standard clustering benchmarks demonstrate the ASM and 
A'C are more direet, easy to implement, and more efficient 
than previous methods. 
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1. Introduction 

5 

The social insects' behaviors such as reproducing, food 
hunting, nest building, garbage cleaning, and territory 
guarding show that gregarious social insects such as ants 
and bees have high swarm intelligence ".'l. Many 
optimization algorithms have been designed to simulate 
such swam intelligence and these algorithms have been 
successfully applied to the areas of function optimization ['I, 
combinational optimization ['.31, network routing I4I and 
other scientific fields. Among the social insects' many 
behaviors, the most widely recognized is the ants' ability to 
,work as a group in order to finish a task that cannot be 
finished by a single ant. Also seen in human society, this 
ability of ants is a result of cooperative effects.The 
cooperative effect refers to the phenomenon that the effect 
of two or more individuals or parts coordinating is higher 
than the total of the individual effects. 

Cellular Automata (CA) ['I, which is frstly proposed 
by J.von N e u " ,  is a discrete solution method of partial 
differential equations. It is a very effective tool to simulate 
complex phenomenon by using only a few rules and simple 

operations. The concept of artificial ants was proposed in 
CA previously. Some researchers have achieved promising 
results in data mining by using the artificial ant colany. 
Deneubourg et al are the first scientists to perform 
research in this field. They proposed a Basic Model (BM) 
to explain the ants' behaviors of piling corpses. Baaed on 
BM, Lumer and Faieta "' presented a formula to measure 
the similarity between two data objects and designed the 
LF algorithm for data clustering. BM and LF have become 
well-known models that have been extensively used in 
different applications [*I and reported promising results. 

Since artificial ants in BM large amount of random 
idle moves before they pick up or drop corpses, large 
amount of repetition occun during the random idle move, 
which increases the computational time cost greatly. To 
form a high-quality clustering, the time cost is even higher. 
BM and LFs  sensitivity for the setting of parameters, 
especially the key parameter a, relies on the experience of 
the user so much, so that the clustering is lack of robusmess 
and the effect of the clustering is influenced. Hand1 et al. 
have done some work to improve LFs  performance, but 
while refering to the clustering based on the ants ccrpse 
piling model, the extent of improvement is limited. Besides, 
according to Abraham Harold Maslow's [91 hierarchy of 
needs theory, the security desire becomes more important 
for ants when their primary physical needs are satisfied. 
Inspired by the behavior of ants, we borrow the principle of 
CA in artificial life and propose an Ants Sleeping Model 
(ASM) to explain the ants' behaviors of searching tor 
secure habitat. 

In ASM, an ant has two states on a two-dimensic nal 
grid active state and sleeping state. When the artifrcial 
ant's fitness is low, he has a higher probability to wake up 
and stay in active state. He will thus leave his ongiual 
position to search for a more secure and comfortable 
psition to sleep. When an ant locates a comfortable and 
secure position, he has a higher probability to sleep unless1 
the surrounding environment becomes less hospitnble and 
actives him again. 
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Based on ASM, we present an Adaptive Amficial 
Ants Clustering Algorithm (A4C) in which each artificial 
ant is a simple agent’representing an individual data object. 
We defme a fimess function to measure the ants’ similarity 
with their neighbors. Since each individual ant uses only a 
little local information to decide whether to be in active 
state or sleeping state, the whole ant group dynamically 
self-organizes into distinctive, independent subgroups 
within which highly similar ants are closely connected. The 
result of data objects clustering is therefore achieved. In 
ASM, we also presented several local movement strategies 
that speed up the clustering greatly. Ex erimental results 
show that, compared with BM and LF, A C based on ASM 
is much more direct and simpler for implementation. It is 
self-adaptive in adjusting parameters, has fewer restrictions 
on parameters, requires less computational cost, and has 
better clustering quality. 

2. Ants Sleeping Model 

? 

The earliest model to explain the ants’ behavior of 
piling corpses, which is commonly known as BM (Basic 
Model), was proposed by-Deneubourg et al [’I. Lumer and 
Faieta Is’ improved the BM model and proposed a new 
model called LF (Lumer and Faieta’s Model). Both BM and 
LE models separate ants from the being clustered data 
objects, which increases the amount of data arrays to be 
processed. Since these algorithms use much more 
parameters and information, they require large amount of 
memory space. Since the clustered data objects cannot 
move automatically and directly; the data movements have 
to be implemented indirectly through the ants’ movements, 
which bring a large amount of extra information storage 
and computation burden because the ants make idle 
movement when carrying no data object. Moreover, in LF 
the ants carrying isolated data items will make everlasting 
move since they will never find a proper location to drop 
down the isolated data items. This will consume large 
amount of computational time. Based on the phenomenon 
that ants tend to group with fellows with similar features, 
we propose the ants sleeping model (ASM). In this model, 
the ants directly represent the clustered data objects. The 
ants move according to the fitness of the sumunding 

-environment and form into groups eventually and hence the 
corresponding data items are clustered. 

2.1. Ants Sleeping Model 

Due to the need,for security, the ants are constantly 
choosing more comfortable and secure environment to 
sleep in. This makes ants to group with those that have 
similar physiques. Even within an ant group, they l i e  to 

have familiar fellows in the neighborhood. This is the 
inspiration for us to establish the artificial ants sleeping 
model (ASM). In ASM, the agent represents the ant, and 
his purpose is to search for a comfortable position for 
sleeping in his surrounding environment. His behavior is 
simple and repetitive: when he doesn’t find a suitable 
position to have a rest, he will actively move around to 
search for it and stop until he finds one; when he is not 
satisfied with his current position, he becomes active again. 
We can formally define the major factors of ASM as 
follows: 

Definition 1 
Let G represents a two-dimensional array of all 

positions ( x ,  Y ) E  [O..zr&]- I T ,  where q ~ Y ) E z + ~ o } .  

The grid in ASM is similar to that of cellular 
automata. 
G(x, y )  = i, if there is an agent labeled i at position (x, y ) .  
otherwise C(x, y )  = 0.  Unless otherwise stated, the variables 
used here are all integers. The ASM uses a grid 
topologically equivalent to a sphere grid. The advantages of 
this grid are, on the one hand, it can ensure the equality of 
all the locations in the grid; on the other hand, the operation 
style of cellular automata can be borrowed to expedite the 
agents’ movement and computation. 

Definition 2 
Let an agent represent a data object by using agent, 

to represent the i* agent, and n be the number of agents. 
The position of an agent is represented by ( x , , y i ) ,  namely 

G(ngen()=G(x,,y,)=i 

In ASM, each agent represents one data object, for it is 
closer to the nature of clustering problem because the 
agents (ants) have the intelligence of “birds of a feather 
flock together” but do not have the ability to categorize 
data objects. 

Definition 3 
N(agenf,) = cx, y)mod ($A) 1 lx-xjI s,.Iy - yil s sy (1) 

Let N ( x , , ~ , )  =N(agen t ) .  S, and sY are the vision 

limits of agent,% in the horizontal and vertical direction. 

~ ( ~ ~ ~ ~ t , )  is used to denote agent, ’S neighbor whose SiZe 

is (zs, + I)X ( 2 ~ ,  + 1). L(ogent,) is used to denote a set 

of empry positions in N(agent,) .  

Definitian 4 
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k t  data, = (z,,,~~,,..., Z * ) E  R',k E z+, so we have 

d(agent , , agent j )  = d (data j ,  data j )  = \\data, - data I 11 (3) 

d(agen(,agenr,) is determined by the distance 

between agent, and a g e n t j ,  representing the variance 

Normally, we take . '  between agent, and agentj . 
Euclidean distance where p = 2 .  

Definition 5 

f (agenf) = 
a; z 1 

(Zs, +Ox(Zr, +l),m,.~(.m~a: +d(ogent,agen$)' 

f(agent,)  represents the current fitness of agent,. a, 
represents the average distance between agent, and other 

agents, and is used to determine when should agent, leave 

from other agents. Simply, we can use a to substitute a,. 

Definition 6 

(7) 

In the above,J,e R' is a parameter, and can be called 
agents' activated pressure. Function p, (agent,) 

represents the probability of the activation of agent, by 

surroundings. If agent, 'S fitness f(agent,)+O . 
p,(agent,)+l.  agenti is easier to be waken up to be 

active, moving and searching for the most fitted place to 
sleep; Otherwise, if f(agenr,) + 1 I p.(agent,) + 0 . 
agent, tend to stay sleeping. . 

Through the definitionl-6, we have the following 
description of ASM. At the beginning of the algorithm, the 
agents are randomly scattered on the grid in active state. 
They randomly move on the grid following a certain 
moving strategy. The simplest one is to freely choose an 
unoccupied position in the neighborhood as the next 
destination. . . 

In each loop, after the agent moves to a new position, 
it will recalculate its current fitness f and probability p. so 
as to decide whether it needs to continue moving. If the 
current p.  is small, the agent has a lower probability of 
continuing moving and higher probability of taking a rest at 

its current position. Otherwise the agent will stay in active 
state and continue moving. The agent's fitness is related to 
its heterogeneity with other agents in its neighborhood. The 
agents influence the fitness of its neighborhood during the 
movements. With increasing number of it6rations. such 
movements gradually increase, eventually, making similar 
agents gathered within a small area and different types of 
agents located in separated areas. Thus, the corresponding 
data items are clustered. 

It can be easily seen that in ASM the local effect can 
expand to the whole living environment of the agents and 
cause some global effects. Using only local information, 
the agents can update information and send it through the 
grid to other agents. The agents dynamically form into 
clusters through the cooperative effect. 

3. Adaptive artifiaal ants clustering algorithm 

On the ASM, we design an adaptive artificial ants 
clustering algorithm (A4C). 

Algorithm A'C 
1. initislizedtheparameters s&e,t-,t,~,,~,,k~,k, 
2. far  eacb'agent da 
3. 
4. endfor 
5. while (not termination) //such as t I I, 
6. for each agent do 
7. 

place agent at randomly selected site on grid 

compute agent's fitness f(agent) and 
activate probability p a  (agent) 

according to (4) and (7) 
r t random ( [ O ,  1)) 8. 

9. i# , .spn then 

IO. activate agent and move to random 
selected neighbor's site not 
occupied by other agents 

stay at current site and sleep 
11. 'eke 
12. 
13. end i# 
14. end for  
15. 

16. end while i 
17. output location of agents 

adaptively update parameters s& t c t + i  

Some details of the algorithm should be explained 
the follows. 

3.1. 'Computing the fitness of the agents 

Line 7 of the algorithm computes the fitness of the 
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agents according to (4). There are several approaches to 
determine the value of a in (4): 
0 The simplest way is to let a be a constant. For 

instance we can let the value of a be equal to the mean 
distance between all the agents (see formula (6)). Since the 

distance d(agentr,agent,) between agent, and ageni, 

can be calculated beforehand, the value of a can also be 
computed before the procedure of clustering. 

@ Assign each agent with different a value. Denote 
the a value of agent, as a , ,  we can let a, be the 

mean distance from agent, to all the other agents (see 

formula (5)). Similarly, by a preprocessing beforehand, the 
value of a, and the value of d(agentt*agenf,) can be 

a 

a, 

calculated before thz proccdure of clustering 

clustering, while at the latter stage they requires rather long 
time to improve the clustering since the precision needs to 
be raised. So A ,  the activating pressure coefficient tends to 
change decreasingly on the whole. In Line 15 of A4C, 
which updates the parameters, we can adjust the value of 
A adaptively by the following function, 

(10) A@) = 2+Agf"""  k 
f ,  f 

Suppose tm%.=1@. ,?00=2+4g,-2* kA - 6 6 ,  7 &&2&1*=2. 
f; f; f L  

According to our experience, if t& and8 20.5. then 

k,  = 1. Additionally, when k,  =o,@degenerates to@. 

33. The strategy of agent's movement 

10 

In each iteration of the algorithm, the activa'ed agents 
move to an empty location selected from L(agpnt,). Line 

@I The value of a is adjusted adaptively during the IO of the algorithm first selects such locatio;, and then 
moves the activated agents 10 it. Several methods c.m be 
used to determine agent,'s next position: 

pro;essing of clust-ring. We use 

@ The random method. afenf;  selec's a location 
(8) 

- .  
to denote the average fitness of the agents in the f-th 
iteration. To a c-rtain extent, f, indicates the quality of 
the clustering. In line 15, which updates the parameters, the 
value of a can be modified adaptively using 8 : 

EIere &, isaconstant. 

from L ( ~ ~ ~ ~ ~ , )  randomly. 
0 The greedy methcd. Let a parameter e E [OJ] 

determine agent,'s probability to select the most suitable 

location as its destination from L(agent,). We denote it as 

&greedy selecting method. This method cin make full use 
of the local information. 

a([) = a([ - At) - k,  (f, - .?.& ) (9). 

3.2. Computing the activate prpbability of the agents 

The active probability of the agents is computed in 
Line 7 using (7). In (7) the parameter A is a pressure 
coefficient of p,(agent) . If we take a=2 and 

f (agent  ) = - . p ,  (ageni) = cm2 - = -, means the 

mathematical expectation of p,(agent) is about 0.5 

Normally, there are two methods to determine the 
parameter a asfollows: 

[;) ; I 
2 

0 a is a constant. We suggest 1 z 2 .  
@ Adjust the value of 1 adaptively. When the 

value of f i s  determined, the value of decreases if 

A is increased. This means the agent has less chance to be 
activated whm the A is large. Generally, the ants can 
form a rough clustering rudiment fast in the initial stage of 

4. Experimental results 

In this section, we not only show the test iesult on the 
ant-based clustering data benchmark whiLh wai introduced 
by [SI to compare our method with that of the LF, but also 
show the test results on the Iris data set. 

4.1. Ant-based Clustering Data Benchmark 

First we test a dam set with four data types each of 
which consists of 200 two-dimensional lata (x  y) as shown 
in Fig. ](a). Here x and y obey normal 
distributionN(p,o'). The normal disuibutions of the four 

types of data (x, y) are ( N ( O . ~ , ~ . ~ ~ ) , N ( O . ~ , O . ~ ~ ) )  I 

(N(0.2,0.1') ,N(0.8,0.12))  (N(O.~,O.l') ,N(0.2,0.1'))  

and (N(0.8,0.1z),N(0.8,0.12)) respec ively. 
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Figure 1. The process of clusterinp of LF algmithm 
(a) Data distribution in the attribute space. 
@) Initial data distribution in the grid 
(e) Data distribution after 500000 iterations 
(d) Data distribution after 1OOOOOO iterations 

In Lumer and Faieia’s experiment a 100x100 grid was 
uied and the initial distribution of the agents in the grid is 
as shown in Fig. 20) .  Fig. 2(c) and Fig. 2(d) show the data 
clishibution after 500000 and loo0000 iterations 
respectively. The parameters used in the test are 
k, =0.l,k2=0.15,a=0.5,s2=9. 

We test the same benchmark using our algorithm A4C. 
.Fig. 2(a) shows the clustered data while Fig. 2(b) shows the 
initial distribution of the agents in the grid. Fig. Z(c) and (d) 
show the agents’ distribution after loo00 and 2oooO 
iterations respectively. In the test the parameters are set as: 
t , t2xl@, s ,+ l  s , + l  0 ~ 0 . 9 4  ka=O.5Q k A = l  . 
The initial value of a in (6) is 0.5486, and 

&t)=2+slg&. In each iteration, the value of a is 

updated adaptively by formula o4t)=o4t-51)-kG-j--~~. In 

the movement, the agent selects its destination using greedy 
method. 

A t  

(C; 

Figure 2. Tnc process of clustering of A4C 
(a) Ini!ial data :distribution in the grid 
(b) Agents‘ di.uibution after 0 itei-ations 
(c)  ape:^‘ dihtribution after 10000 iterations 
(d) P.ycnts’ distribution after 20000 iterations 

The figiireb Fhcw that the LF algorithm costs much 
more cmputatiou time than ours. The reason is that LF 
clgoritluri spends much time for the ants to search for the 
pmper location to pickup or drop the data objects. 

4.2. Real Data Sets Benchmark 

We test LF and A4C using the real benchmark of Iris. 
In th; test, we consider two types et‘ AJC: one sets the 
parameters adaptively and we still denote it as A4C, the 
other uses constant parameters and we call it SA4C (special 
A4C). Large amount experimental results that the A4C 
clustering results after 5000 iterations are mostly better 
than those of LF after 1OOOOOO iterations. We set the 
parameter t- the maximum iterations of LF algorithm as 
1000000, and those for A4C and SA4C as 5000. We set the 
parameters k ~ O . 1 0 ,  k2=0.15 in LF and set m.9, 
h=2,k&5, kk=l in SA4C and A4C. We also set the initial 
a valiie of A4C as 0.4483 and the a value of A4C as 
0.30. In the three algorithms, we set the size of the neighbor 
as 3x3. Results of 100 trials of each algorithm on the Iris. 
data set a16 shown in Tab. 1. It can easily be seen from Tab. 
1 that SA4C and A4C requiie less iteration than LF. The 
qunlity of the clustering of S.44C is better than LF, but is 
worse than A4C. 
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Table 1. Parameters and test result: 
on Iris (100 tri; 

I I LF 

Maximum 
iterations tm 

I 

Minimumemrs I 3 

Maximum errors LlzJz 
Percentage of the 4.45% Lrr 

In the LF algorithm, the agents make large amount 
of idle moving and the parameters are not adaptively 
selected, it takes quite a long time to converge. Moreover, 
the parameters in LF algorithm is hard to select especially 
the parameter a is very sensitive and can affect the 
quality of clustering result. In our algorithm, the agents 
move effectively, the parameters are selected and adjusted 
adaptively. It has fewer restrictions on parameters, requires 
less computational cost, and bas better clustering quality. 

5. c0nc1usi0n 

An artificial Ants Sleeping Model (ASM) is presented 
to resolve the clustering problem in data mining by 
simulating the behaviors of gregarious ant colonies. In the 
ASM mode, each data is represented by an agent. The 
agents’ environment is a two-dimensional grid where each 
agent interacts with its neighbors and exerts influence on 
others. Those with similar features form into groups, and 
those with different features repel each other. In addition, 
we proposed effective formulae for computing the fitness 
and activating probability of agents based on the ASM 
model. We also present an Adaptive Artificial Ants 
Clustering Algorithm (A4C). We also proposed several ants 
moving strategies for A4C that have salient effect in 
fastening the clustering process. In A4C, the agents can 
form into high-quality clusters by making simple moves 
according to little local neighborhood information and the 

parameters are selected and adjusted adaptively. It has 
fewer restrictions on parameters, requires less 
computational cost, and bas better clustering quality. 
Experimental results on standard clustering benchmarks 
demonshate the ASM and A4C are more direct, easy to 
implement, and more efficient than BM and LF. 
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